These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19154840)

  • 1. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait.
    Gordon KE; Ferris DP; Kuo AD
    Arch Phys Med Rehabil; 2009 Jan; 90(1):136-44. PubMed ID: 19154840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced vertical displacement of the center of mass is not accompanied by reduced oxygen uptake during walking.
    Wurdeman SR; Raffalt PC; Stergiou N
    Sci Rep; 2017 Dec; 7(1):17182. PubMed ID: 29215063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial-lateral centre of mass displacement and base of support are equally good predictors of metabolic cost in amputee walking.
    Weinert-Aplin RA; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Gait Posture; 2017 Jan; 51():41-46. PubMed ID: 27697719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?
    Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A
    J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of pelvic rotation as a determinant of gait.
    Kerrigan DC; Riley PO; Lelas JL; Della Croce U
    Arch Phys Med Rehabil; 2001 Feb; 82(2):217-20. PubMed ID: 11239313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of constrained arm swing on vertical center of mass displacement during walking.
    Yang HS; Atkins LT; Jensen DB; James CR
    Gait Posture; 2015 Oct; 42(4):430-4. PubMed ID: 26234472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An instance of reduced center of mass displacement: the Ba Gua Zhang walking gait.
    Chong RK; Chiu FC; Lee KH; Do MC
    Percept Mot Skills; 2009 Dec; 109(3):646-8. PubMed ID: 20178262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking beyond preferred transition speed increases muscle activations with a shift from inverted pendulum to spring mass model in lower extremity.
    Shih Y; Chen YC; Lee YS; Chan MS; Shiang TY
    Gait Posture; 2016 May; 46():5-10. PubMed ID: 27131169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Center of mass motion and the effects of ankle bracing on metabolic cost during submaximal walking trials.
    Herndon SK; Bennett BC; Wolovick A; Filachek A; Gaesser GA; Weltman A; Abel MF
    J Orthop Res; 2006 Dec; 24(12):2170-5. PubMed ID: 17019702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic and ground reaction force accommodation during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2015 Dec; 44():327-37. PubMed ID: 26540454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke.
    Bae J; Awad LN; Long A; O'Donnell K; Hendron K; Holt KG; Ellis TD; Walsh CJ
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking.
    Lewek MD; Osborn AJ; Wutzke CJ
    Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of end-stage hip, knee, and ankle osteoarthritis on walking mechanics.
    Schmitt D; Vap A; Queen RM
    Gait Posture; 2015 Sep; 42(3):373-9. PubMed ID: 26213184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics and energetics of load carriage during human walking.
    Huang TW; Kuo AD
    J Exp Biol; 2014 Feb; 217(Pt 4):605-13. PubMed ID: 24198268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking.
    Gard SA; Childress DS
    Arch Phys Med Rehabil; 1999 Jan; 80(1):26-32. PubMed ID: 9915368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered Walking Neuromechanics in Patients With Chronic Ankle Instability.
    Son SJ; Kim H; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):684-697. PubMed ID: 31162941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.