BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19155327)

  • 1. Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing.
    Zhang XH; Arias MA; Ke S; Chasin LA
    RNA; 2009 Mar; 15(3):367-76. PubMed ID: 19155327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing of designer exons informs a biophysical model for exon definition.
    Arias MA; Lubkin A; Chasin LA
    RNA; 2015 Feb; 21(2):213-29. PubMed ID: 25492963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers.
    Holm LL; Doktor TK; Hansen MB; Petersen USS; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):253-265. PubMed ID: 34923709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational definition of sequence motifs governing constitutive exon splicing.
    Zhang XH; Chasin LA
    Genes Dev; 2004 Jun; 18(11):1241-50. PubMed ID: 15145827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat.
    Kralovicova J; Patel A; Searle M; Vorechovsky I
    RNA Biol; 2015; 12(1):54-69. PubMed ID: 25826413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional properties and evolutionary splicing constraints on a composite exonic regulatory element of splicing in CFTR exon 12.
    Haque A; Buratti E; Baralle FE
    Nucleic Acids Res; 2010 Jan; 38(2):647-59. PubMed ID: 19910374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing of a myosin phosphatase targeting subunit 1 alternative exon is regulated by intronic cis-elements and a novel bipartite exonic enhancer/silencer element.
    Dirksen WP; Mohamed SA; Fisher SA
    J Biol Chem; 2003 Mar; 278(11):9722-32. PubMed ID: 12509424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Competing HIV-1 Splice Donor Sites Uncovers a Tight Cluster of Splicing Regulatory Elements within Exon 2/2b.
    Brillen AL; Walotka L; Hillebrand F; Müller L; Widera M; Theiss S; Schaal H
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28446664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-mRNA secondary structures influence exon recognition.
    Hiller M; Zhang Z; Backofen R; Stamm S
    PLoS Genet; 2007 Nov; 3(11):e204. PubMed ID: 18020710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA.
    Hayakawa M; Sakashita E; Ueno E; Tominaga S; Hamamoto T; Kagawa Y; Endo H
    J Biol Chem; 2002 Mar; 277(9):6974-84. PubMed ID: 11744705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching for splicing motifs.
    Chasin LA
    Adv Exp Med Biol; 2007; 623():85-106. PubMed ID: 18380342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An exonic splicing silencer is involved in the regulated splicing of glucose 6-phosphate dehydrogenase mRNA.
    Szeszel-Fedorowicz W; Talukdar I; Griffith BN; Walsh CM; Salati LM
    J Biol Chem; 2006 Nov; 281(45):34146-58. PubMed ID: 16980303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse.
    Buvoli M; Buvoli A; Leinwand LA
    PLoS One; 2007 May; 2(5):e427. PubMed ID: 17487273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence of exonic splicing elements after gene duplication and the impact on gene structures.
    Zhang Z; Zhou L; Wang P; Liu Y; Chen X; Hu L; Kong X
    Genome Biol; 2009; 10(11):R120. PubMed ID: 19883501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of all hexamers as exonic splicing elements.
    Ke S; Shang S; Kalachikov SM; Morozova I; Yu L; Russo JJ; Ju J; Chasin LA
    Genome Res; 2011 Aug; 21(8):1360-74. PubMed ID: 21659425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure.
    Damgaard CK; Tange TO; Kjems J
    RNA; 2002 Nov; 8(11):1401-15. PubMed ID: 12458794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.