BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 19156255)

  • 1. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
    Feng X; Sanchis J; Reetz MT; Rabitz H
    Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing and analyzing the fitness landscape of an experimental evolutionary process.
    Reetz MT; Sanchis J
    Chembiochem; 2008 Sep; 9(14):2260-7. PubMed ID: 18712749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions.
    Reetz MT; Wu S
    Chem Commun (Camb); 2008 Nov; (43):5499-501. PubMed ID: 18997931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural history as a predictor of protein evolvability.
    O'Loughlin TL; Patrick WM; Matsumura I
    Protein Eng Des Sel; 2006 Oct; 19(10):439-42. PubMed ID: 16868005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in generating functional diversity for directed protein evolution.
    Shivange AV; Marienhagen J; Mundhada H; Schenk A; Schwaneberg U
    Curr Opin Chem Biol; 2009 Feb; 13(1):19-25. PubMed ID: 19261539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production.
    Hardiman E; Gibbs M; Reeves R; Bergquist P
    Appl Biochem Biotechnol; 2010 May; 161(1-8):301-12. PubMed ID: 19834652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical analysis of random mutagenesis methods used for directed protein evolution.
    Wong TS; Roccatano D; Zacharias M; Schwaneberg U
    J Mol Biol; 2006 Jan; 355(4):858-71. PubMed ID: 16325201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.