BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19156292)

  • 101. A Model Substrate for Ellipsometry Studies of Lipoprotein Deposition at the Endothelium.
    Malmsten M; Siegel G; Becker A
    J Colloid Interface Sci; 2001 Aug; 240(1):372-374. PubMed ID: 11446822
    [TBL] [Abstract][Full Text] [Related]  

  • 102. The Endothelium Solves Problems That Endothelial Cells Do Not Know Exist.
    McCarron JG; Lee MD; Wilson C
    Trends Pharmacol Sci; 2017 Apr; 38(4):322-338. PubMed ID: 28214012
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Friction-limited cell motility in confluent monolayer tissue.
    Christensen A; West AV; Wullkopf L; Terra Erler J; Oddershede LB; Mathiesen J
    Phys Biol; 2018 Jul; 15(6):066004. PubMed ID: 29939152
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
    Feiner-Gracia N; Glinkowska Mares A; Buzhor M; Rodriguez-Trujillo R; Samitier Marti J; Amir RJ; Pujals S; Albertazzi L
    ACS Appl Bio Mater; 2021 Jan; 4(1):669-681. PubMed ID: 33490884
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Capture of cervical exfoliative cells on a glass slide coated by 3-glycidyloxypropyl trimethoxysilane and poly-L-lysine.
    Xing GW; Xiang S; Xue W; Aodeng GW; Liu Y; Zhang JH; Lin JM
    J Pharm Anal; 2012 Jun; 2(3):174-179. PubMed ID: 29403739
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Patterning of sharp cellular interfaces with a reconfigurable elastic substrate.
    Curtis A; Li DJ; DeVeale B; Onishi K; Kim MY; Blelloch R; Laird DJ; Hui EE
    Integr Biol (Camb); 2017 Jan; 9(1):50-57. PubMed ID: 28001149
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device.
    Shi H; Jiang H; Wang L; Cao Y; Liu P; Xu X; Wang Y; Sun L; Niu H
    Cell Cycle; 2015; 14(19):3058-65. PubMed ID: 26125467
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations.
    Chen YC; Allen SG; Ingram PN; Buckanovich R; Merajver SD; Yoon E
    Sci Rep; 2015 May; 5():9980. PubMed ID: 25984707
    [TBL] [Abstract][Full Text] [Related]  

  • 109. A microfluidic co-culture system to monitor tumor-stromal interactions on a chip.
    Menon NV; Chuah YJ; Cao B; Lim M; Kang Y
    Biomicrofluidics; 2014 Nov; 8(6):064118. PubMed ID: 25553194
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Standing surface acoustic wave based cell coculture.
    Li S; Guo F; Chen Y; Ding X; Li P; Wang L; Cameron CE; Huang TJ
    Anal Chem; 2014 Oct; 86(19):9853-9. PubMed ID: 25232648
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Biomimetic tumor microenvironment on a microfluidic platform.
    Ma H; Xu H; Qin J
    Biomicrofluidics; 2013 Jan; 7(1):11501. PubMed ID: 24396521
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Functional investigation of NCI-H460-inducible myofibroblasts on the chemoresistance to VP-16 with a microfluidic 3D co-culture device.
    Hao Y; Zhang L; He J; Guo Z; Ying L; Xu Z; Zhang J; Lu J; Wang Q
    PLoS One; 2013; 8(4):e61754. PubMed ID: 23613925
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Tumor cell migration in complex microenvironments.
    Polacheck WJ; Zervantonakis IK; Kamm RD
    Cell Mol Life Sci; 2013 Apr; 70(8):1335-56. PubMed ID: 22926411
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Biomimetic tissues on a chip for drug discovery.
    Ghaemmaghami AM; Hancock MJ; Harrington H; Kaji H; Khademhosseini A
    Drug Discov Today; 2012 Feb; 17(3-4):173-81. PubMed ID: 22094245
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments.
    Zervantonakis IK; Kothapalli CR; Chung S; Sudo R; Kamm RD
    Biomicrofluidics; 2011 Mar; 5(1):13406. PubMed ID: 21522496
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.
    Kaji H; Camci-Unal G; Langer R; Khademhosseini A
    Biochim Biophys Acta; 2011 Mar; 1810(3):239-50. PubMed ID: 20655984
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Controlled cocultures of HeLa cells and human umbilical vein endothelial cells on detachable substrates.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2009 Feb; 9(3):427-32. PubMed ID: 19156292
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2010 Sep; 10(18):2374-9. PubMed ID: 20563348
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Hydrogel-coated textile scaffolds as three-dimensional growth support for human umbilical vein endothelial cells (HUVECs): possibilities as coculture system in liver tissue engineering.
    Risbud MV; Karamuk E; Moser R; Mayer J
    Cell Transplant; 2002; 11(4):369-77. PubMed ID: 12162377
    [TBL] [Abstract][Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.