These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19156298)

  • 21. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures.
    Grover WH; Ivester RH; Jensen EC; Mathies RA
    Lab Chip; 2006 May; 6(5):623-31. PubMed ID: 16652177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic abacus channel for controlling the addition of droplets.
    Um E; Park JK
    Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Luer-lock valve: A pre-fabricated pneumatic valve for 3D printed microfluidic automation.
    Nie M; Takeuchi S
    Biomicrofluidics; 2020 Jul; 14(4):044115. PubMed ID: 32849974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.
    Lee KS; Ram RJ
    Lab Chip; 2009 Jun; 9(11):1618-24. PubMed ID: 19458871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding.
    Glick CC; Srimongkol MT; Schwartz AJ; Zhuang WS; Lin JC; Warren RH; Tekell DR; Satamalee PA; Lin L
    Microsyst Nanoeng; 2016; 2():16063. PubMed ID: 31057842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA.
    Ogilvie IR; Sieben VJ; Cortese B; Mowlem MC; Morgan H
    Lab Chip; 2011 Jul; 11(14):2455-9. PubMed ID: 21617822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
    Chang MP; Maharbiz MM
    Lab Chip; 2009 May; 9(9):1274-81. PubMed ID: 19370248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic molding of photonic microparticles with engraved elastomeric membranes.
    Sim JY; Choi JH; Lim JM; Cho S; Kim SH; Yang SM
    Small; 2014 Oct; 10(19):3979-85. PubMed ID: 24947445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.
    Willis PA; Hunt BD; White VE; Lee MC; Ikeda M; Bae S; Pelletier MJ; Grunthaner FJ
    Lab Chip; 2007 Nov; 7(11):1469-74. PubMed ID: 17960273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layer-to-layer parallel fluidic transportation system by addressable fluidic gate arrays.
    Morimoto T; Konishi S
    Lab Chip; 2008 Sep; 8(9):1552-6. PubMed ID: 18818812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical Simulation on the Response Characteristics of a Pneumatic Microactuator for Microfluidic Chips.
    Liu X; Li S; Bao G
    J Lab Autom; 2016 Jun; 21(3):412-22. PubMed ID: 25944840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid replication of master structures by double casting with PDMS.
    Gitlin L; Schulze P; Belder D
    Lab Chip; 2009 Oct; 9(20):3000-2. PubMed ID: 19789756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An active bubble trap and debubbler for microfluidic systems.
    Skelley AM; Voldman J
    Lab Chip; 2008 Oct; 8(10):1733-7. PubMed ID: 18813398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Laser-Engraving Technique for Portable Micropneumatic Oscillators.
    Balaji V; Castro K; Folch A
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pneumatically Driven Microfluidic Platform for Micro-Particle Concentration.
    Choi HJ; Lee JH; Jeong OC
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.