These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 19156644)
1. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC. Lee JW; Row KH J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644 [TBL] [Abstract][Full Text] [Related]
2. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
3. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase. Hemmateenejad B; Shamsipur M; Safavi A; Sharghi H; Amiri AA Talanta; 2008 Oct; 77(1):351-9. PubMed ID: 18804645 [TBL] [Abstract][Full Text] [Related]
4. Modeling the retention of neutral compounds in gradient elution RP-HPLC by means of polarity parameter models. Téllez A; Rosés M; Bosch E Anal Chem; 2009 Nov; 81(21):9135-45. PubMed ID: 19803530 [TBL] [Abstract][Full Text] [Related]
5. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372 [TBL] [Abstract][Full Text] [Related]
6. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
7. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533 [TBL] [Abstract][Full Text] [Related]
8. A theoretical plate model accounting for slow kinetics in chromatographic elution. Baeza-Baeza JJ; García-Álvarez-Coque MC J Chromatogr A; 2011 Aug; 1218(31):5166-74. PubMed ID: 21684549 [TBL] [Abstract][Full Text] [Related]
9. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of electroosmotic flow and migration of neutral solutes under stepwise gradient elution of capillary electrochromatography. Zhang L; Zhang W; Ping G; Zhang Y; Kettrup A Electrophoresis; 2002 Aug; 23(15):2417-23. PubMed ID: 12210197 [TBL] [Abstract][Full Text] [Related]
11. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
12. Understanding the importance of the viscosity contrast between the sample solvent plug and the mobile phase and its potential consequence in two-dimensional high-performance liquid chromatography. Shalliker RA; Guiochon G J Chromatogr A; 2009 Jan; 1216(5):787-93. PubMed ID: 19095236 [TBL] [Abstract][Full Text] [Related]
13. Theory of stepwise gradient elution in reversed-phase liquid chromatography coupled with flow rate variations: application to retention prediction and separation optimization of a set of amino acids. Nikitas P; Pappa-Louisi A; Balkatzopoulou P Anal Chem; 2006 Aug; 78(16):5774-82. PubMed ID: 16906723 [TBL] [Abstract][Full Text] [Related]
14. Combined effect of temperature and organic modifier concentration on the retention under single mode gradient conditions in reversed-phase HPLC. Pappa-Louisi A; Nikitas P; Zisi C; Papachristos K J Sep Sci; 2008 Sep; 31(16-17):2953-61. PubMed ID: 18785145 [TBL] [Abstract][Full Text] [Related]
15. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
16. Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models. Kostka J; Gritti F; Guiochon G; Kaczmarski K J Chromatogr A; 2010 Jul; 1217(28):4704-12. PubMed ID: 20627254 [TBL] [Abstract][Full Text] [Related]
17. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F; Guiochon G J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548 [TBL] [Abstract][Full Text] [Related]
18. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile. Nikitas P; Pappa-Louisi A Anal Chem; 2005 Sep; 77(17):5670-7. PubMed ID: 16131080 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the separation of chlorophenols with stepwise gradient elution in reversed phase liquid chromatography. Hadjmohammadi MR; Kamel K; Fatemi MH J Sep Sci; 2007 Nov; 30(16):2687-92. PubMed ID: 17763519 [TBL] [Abstract][Full Text] [Related]
20. Analytical solutions of the ideal model for gradient liquid chromatography. Hao W; Zhang X; Hou K Anal Chem; 2006 Nov; 78(22):7828-40. PubMed ID: 17105177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]