These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1915680)

  • 1. Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy.
    Siebinga I; Vrensen GF; De Mul FF; Greve J
    Exp Eye Res; 1991 Aug; 53(2):233-9. PubMed ID: 1915680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local variations in protein structure in the human eye lens: a Raman microspectroscopic study.
    Smeets MH; Vrensen GF; Otto K; Puppels GJ; Greve J
    Biochim Biophys Acta; 1993 Aug; 1164(3):236-42. PubMed ID: 8343523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined elastic and Raman light scattering of human eye lenses.
    Yaroslavsky IV; Yaroslavsky AN; Otto C; Puppels GJ; Vrensen GF; Duindam H; Greve J
    Exp Eye Res; 1994 Oct; 59(4):393-9. PubMed ID: 7859814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study.
    Siebinga I; Vrensen GF; Otto K; Puppels GJ; De Mul FF; Greve J
    Exp Eye Res; 1992 May; 54(5):759-67. PubMed ID: 1623961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy.
    Huizinga A; Bot AC; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Apr; 48(4):487-96. PubMed ID: 2714410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between local acoustic parameters and protein distribution in human and porcine eye lenses.
    De Korte CL; Van Der Steen AF; Thijssen JM; Duindam JJ; Otto C; Puppels GJ
    Exp Eye Res; 1994 Nov; 59(5):617-27. PubMed ID: 9492763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of normal and aging lens gamma crystallins.
    Mandal K; Lerman S
    Ophthalmic Res; 1993; 25(5):295-301. PubMed ID: 8259262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Studies on human gamma-crystallins. I. Quantitative changes with age and cataract formation].
    Wu K; Li S; Pan S; Liang S; Cao X
    Yan Ke Xue Bao; 1992 Jun; 8(2):68-72. PubMed ID: 1299602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging affects the conformation of cholesterol in the human eye lens.
    Duindam JJ; Vrensen GF; Otto C; Greve J
    Ophthalmic Res; 1996; 28 Suppl 1():86-91. PubMed ID: 8727974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a human crystallin map. Two-dimensional gel electrophoresis and computer analysis of water-soluble crystallins from normal and cataractous human lenses.
    Bloemendal H; Van de gaer K; Benedetti EL; Dunia I; Steely HT
    Ophthalmic Res; 1997; 29(4):177-90. PubMed ID: 9261842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in lens protein in concentric fractions from individual normal human lenses.
    Li LK; Roy D; Spector A
    Curr Eye Res; 1986 Feb; 5(2):127-35. PubMed ID: 3956240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid contents along the visual and equatorial axes of a pig lens by Raman spectroscopy.
    Medina-Gutiérrez C; Frausto-Reyes C; Quintanar-Stephano JL; Sato-Berrú R
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Aug; 60(10):2269-74. PubMed ID: 15249015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [FTRaman and FTIR spectroscopy in lens with senile cataract].
    Chen C; Su X; Zhang X
    Zhonghua Yan Ke Za Zhi; 1997 Sep; 33(5):337-9. PubMed ID: 10451975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein size resolution in human eye lenses by dynamic light scattering after in vivo measurements.
    Dierks K; Dieckmann M; Niederstrasser D; Schwartz R; Wegener A
    Graefes Arch Clin Exp Ophthalmol; 1998 Jan; 236(1):18-23. PubMed ID: 9457512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.