These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 19157120)
1. [Optimal extraction of nuciferine and flavone from lotus leaf based on central composite design and response surface methodology]. Wang GH; Zhang BX; Nie QX; Li H; Zang C Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(20):2332-5. PubMed ID: 19157120 [TBL] [Abstract][Full Text] [Related]
2. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Ma W; Lu Y; Hu R; Chen J; Zhang Z; Pan Y Talanta; 2010 Jan; 80(3):1292-7. PubMed ID: 20006090 [TBL] [Abstract][Full Text] [Related]
3. Processing tactics for low-cost production of pure nuciferine from lotus leaf. Ruan Y; Xu J; Chu J; Shi J; Shi Q Ultrason Sonochem; 2022 May; 86():106026. PubMed ID: 35537315 [TBL] [Abstract][Full Text] [Related]
4. [Study on the optimal extaction of total flavonoids from Tagetes erecta by central composite design-response surface methodology]. Jia CP; Tian BC; Li YB; Gao YB; Yu BM; Pan WL Zhong Yao Cai; 2009 Mar; 32(3):430-2. PubMed ID: 19565726 [TBL] [Abstract][Full Text] [Related]
5. [Optimize the extraction process with supercritical CO2 fluid from lotus leaves by the uniform design and analysis on the chemical constituents by GC-MS]. Yin HJ; Qian YF; Pu CH Zhong Yao Cai; 2007 Apr; 30(4):464-6. PubMed ID: 17674804 [TBL] [Abstract][Full Text] [Related]
6. [Study on the extraction of total alkaloid from folium nelumbinis with ultrasonic wave technology optimized by central composite design and response surface method]. Wang FG; Cao J; Liu B; Wang YX; Gao YS; Chen J Zhong Yao Cai; 2011 Apr; 34(4):616-9. PubMed ID: 21809549 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf. Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949 [TBL] [Abstract][Full Text] [Related]
8. Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials. Heng L; Wang X; Dong Y; Zhai J; Tang BZ; Wei T; Jiang L Chem Asian J; 2008 Jun; 3(6):1041-5. PubMed ID: 18446919 [TBL] [Abstract][Full Text] [Related]
9. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology]. Wang HW; Liu YQ; Wang YH Zhong Yao Cai; 2011 Jul; 34(7):1125-9. PubMed ID: 22066410 [TBL] [Abstract][Full Text] [Related]
10. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach. Balani K; Batista RG; Lahiri D; Agarwal A Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417 [TBL] [Abstract][Full Text] [Related]
11. [Optimal extraction of melampyrit from Euonymus fortunei by central composite design-response surface methodology]. Wei WJ; Liu YP Zhong Yao Cai; 2009 Jun; 32(6):972-4. PubMed ID: 19764338 [TBL] [Abstract][Full Text] [Related]
12. [Optimal extraction of polysaccharide from Dioscorea nipponica by central composite design and response surface methodology]. Zhang N; Kang TG; Yin HB Zhong Yao Cai; 2011 Jan; 34(1):123-6. PubMed ID: 21818979 [TBL] [Abstract][Full Text] [Related]
13. Repellency of the lotus leaf: resistance to water intrusion under hydrostatic pressure. Extrand CW Langmuir; 2011 Jun; 27(11):6920-5. PubMed ID: 21545123 [TBL] [Abstract][Full Text] [Related]
14. [Optimation the extracting technology of Angelica sinensis by central composite design and response surface methodology]. Liu X; Chen LP; Xia PF; Liu FL; Fan Q; Zhao L Zhong Yao Cai; 2013 Nov; 36(11):1853-7. PubMed ID: 24956828 [TBL] [Abstract][Full Text] [Related]
15. [Chemical constituents of flavonoids in the leaf of Ginkgo biloba L]. Chi J; Xu L Zhongguo Zhong Yao Za Zhi; 1998 Jan; 23(1):40-1, 63. PubMed ID: 11243155 [TBL] [Abstract][Full Text] [Related]
16. Application of response surface methodology to optimise extraction of flavonoids from fructus sophorae. Xu Q; Shen Y; Wang H; Zhang N; Xu S; Zhang L Food Chem; 2013 Jun; 138(4):2122-9. PubMed ID: 23497866 [TBL] [Abstract][Full Text] [Related]
17. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Mylonaki S; Kiassos E; Makris DP; Kefalas P Anal Bioanal Chem; 2008 Nov; 392(5):977-85. PubMed ID: 18762919 [TBL] [Abstract][Full Text] [Related]
18. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology]. Lv SW; Liu D; Hu PP; Ye XY; Xiao HB; Kuang HX Zhong Yao Cai; 2010 Mar; 33(3):442-5. PubMed ID: 20681312 [TBL] [Abstract][Full Text] [Related]
19. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. Extrand CW; Moon SI Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189 [TBL] [Abstract][Full Text] [Related]
20. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves. Tang X; Dong J; Li X J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]