These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19157492)

  • 41. Uptake and bioavailability of persistent organic pollutants by plants grown in contaminated soil.
    Esteve-Turrillas FA; Scott WC; Pastor A; Dean JR
    J Environ Monit; 2005 Nov; 7(11):1093-8. PubMed ID: 16252059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior.
    Nakamaru Y; Uchida S
    J Environ Radioact; 2008 Jun; 99(6):1003-10. PubMed ID: 18164522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on pesticide adsorption and mobility in a tropical soil.
    Lalah JO; Njogu SN; Wandiga SO
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):352-8. PubMed ID: 19434352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial distribution, transport dynamics, and health risks of endosulfan at a contaminated site.
    Fang Y; Nie Z; Die Q; Tian Y; Liu F; He J; Huang Q
    Environ Pollut; 2016 Sep; 216():538-547. PubMed ID: 27307269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    Bull Environ Contam Toxicol; 2008 May; 80(5):443-6. PubMed ID: 18496629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the relative dissipation rates of endosulfan pesticide residues between oolong and green tea.
    Xia H; Ma X; Tu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jan; 25(1):70-5. PubMed ID: 17952756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissipation and leaching of (14)C-monocrotophos in Soil Columns under subtropical climate.
    Vig K; Singh DK; Agarwal HC
    J Environ Sci Health B; 2006; 41(4):377-83. PubMed ID: 16753957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue.
    Cabidoche YM; Achard R; Cattan P; Clermont-Dauphin C; Massat F; Sansoulet J
    Environ Pollut; 2009 May; 157(5):1697-705. PubMed ID: 19167793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sorption and mobility of ivermectin in different soils.
    Krogh KA; Søeborg T; Brodin B; Halling-Sørensen B
    J Environ Qual; 2008; 37(6):2202-11. PubMed ID: 18948473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil.
    Vinther FP; Brinch UC; Elsgaard L; Fredslund L; Iversen BV; Torp S; Jacobsen CS
    J Environ Qual; 2008; 37(5):1710-8. PubMed ID: 18689732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial variation in 2-methyl-4-chlorophenoxyacetic acid mineralization and sorption in a sandy soil at field level.
    Fredslund L; Vinther FP; Brinch UC; Elsgaard L; Rosenberg P; Jacobsen CS
    J Environ Qual; 2008; 37(5):1918-28. PubMed ID: 18689753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.
    Odukkathil G; Vasudevan N
    J Environ Manage; 2016 Jan; 165():72-80. PubMed ID: 26413801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of the environmental persistence and long-range transport of endosulfan.
    Becker L; Scheringer M; Schenker U; Hungerbühler K
    Environ Pollut; 2011 Jun; 159(6):1737-43. PubMed ID: 21429639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sorption kinetics of 2,4-D and carbaryl in selected agricultural soils of northern Iraq: application of a dual-rate model.
    Shareef K; Shaw G
    Chemosphere; 2008 May; 72(1):8-15. PubMed ID: 18420250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissipation, half-lives, and mass spectrometric identification of endosulfan isomers and the sulfate metabolite on three field-grown vegetables.
    Antonious G; Hill R; Ross K; Coolong T
    J Environ Sci Health B; 2012; 47(5):369-78. PubMed ID: 22424060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of alpha and beta endosulfan in soil as influenced by application of different organic materials.
    Al-Hassan RM; Bashour II; Kawar NS
    J Environ Sci Health B; 2004; 39(5-6):757-64. PubMed ID: 15620084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endosulfan leaching from Typic Argiudolls in soybean tillage areas and groundwater pollution implications.
    Grondona SI; Gonzalez M; Martínez DE; Massone HE; Miglioranza KS
    Sci Total Environ; 2014 Jun; 484():146-53. PubMed ID: 24698801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption-desorption behavior of thiram onto humic acid.
    Filipe OM; Vidal MM; Duarte AC; Santos EB
    J Agric Food Chem; 2009 Jun; 57(11):4906-12. PubMed ID: 19425576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of several low-molecular-weight organic acids on the release kinetic of endosulfan from red soil].
    Zhao ZH; Wu Y; Jiang X; Xia LL; Ni LX
    Huan Jing Ke Xue; 2009 Oct; 30(10):3077-81. PubMed ID: 19968134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.