These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19157520)

  • 1. Forecasting of ozone episode days by cost-sensitive neural network methods.
    Tsai CH; Chang LC; Chiang HC
    Sci Total Environ; 2009 Mar; 407(6):2124-35. PubMed ID: 19157520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method of ozone forecasting using fuzzy expert and neural network systems.
    Heo JS; Kim DS
    Sci Total Environ; 2004 Jun; 325(1-3):221-37. PubMed ID: 15144791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of ozone concentrations in Oporto city with statistical approaches.
    Sousa SI; Martins FG; Pereira MC; Alvim-Ferraz MC
    Chemosphere; 2006 Aug; 64(7):1141-9. PubMed ID: 16405949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
    Lu WZ; Wang WJ
    Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme.
    Lu WZ; Wang D
    Sci Total Environ; 2008 Jun; 395(2-3):109-16. PubMed ID: 18329697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interval estimation of urban ozone level and selection of influential factors by employing automatic relevance determination model.
    Wang D; Lu WZ
    Chemosphere; 2006 Mar; 62(10):1600-11. PubMed ID: 16084571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating ROC curves for artificial neural networks.
    Woods K; Bowyer KW
    IEEE Trans Med Imaging; 1997 Jun; 16(3):329-37. PubMed ID: 9184895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan.
    Kuo YM; Liu CW; Lin KH
    Water Res; 2004 Jan; 38(1):148-58. PubMed ID: 14630112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid neural-genetic algorithm for reservoir water quality management.
    Kuo JT; Wang YY; Lung WS
    Water Res; 2006 Apr; 40(7):1367-76. PubMed ID: 16545860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving of local ozone forecasting by integrated models.
    Gradišar D; Grašič B; Božnar MZ; Mlakar P; Kocijan J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18439-50. PubMed ID: 27287489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis].
    Yang YW; Chen G; Yang YW; Chen G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1339-43. PubMed ID: 16329517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An online air pollution forecasting system using neural networks.
    Kurt A; Gulbagci B; Karaca F; Alagha O
    Environ Int; 2008 Jul; 34(5):592-8. PubMed ID: 18237781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves.
    Kupinski MA; Anastasio MA
    IEEE Trans Med Imaging; 1999 Aug; 18(8):675-85. PubMed ID: 10534050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying an artificial neural network to predict osteoporosis in the elderly.
    Chiu JS; Li YC; Yu FC; Wang YF
    Stud Health Technol Inform; 2006; 124():609-14. PubMed ID: 17108584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens.
    Chaloulakou A; Saisana M; Spyrellis N
    Sci Total Environ; 2003 Sep; 313(1-3):1-13. PubMed ID: 12922056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Norwalk-like virus presence in shellfish, using artificial neural networks.
    Brion G; Lingeriddy S; Neelakantan TR; Wang M; Girones R; Lees D; Allard A; Vantarakis A
    Water Sci Technol; 2004; 50(1):125-9. PubMed ID: 15318497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural networks based prediction of cerebral palsy in infants with central coordination disturbance.
    Lukić S; Ćojbašić Ž; Jović N; Popović M; Bjelaković B; Dimitrijević L; Bjelaković L
    Early Hum Dev; 2012 Jul; 88(7):547-53. PubMed ID: 22281057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on meteorological factors-based neural network model of malaria].
    Gao CY; Xiong HY; Yi D; Chai GJ; Yang XW; Liu L
    Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Sep; 24(9):831-4. PubMed ID: 14521780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-source impact analysis using three-dimensional air quality models.
    Bergin MS; Russell AG; Odman MT; Cohan DS; Chameides WL
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1351-9. PubMed ID: 18939782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.