BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19157835)

  • 1. Life cycle impact assessment of various waste conversion technologies.
    Khoo HH
    Waste Manag; 2009 Jun; 29(6):1892-900. PubMed ID: 19157835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the US decision support tool for materials and waste management.
    Thorneloe SA; Weitz K; Jambeck J
    Waste Manag; 2007; 27(8):1006-20. PubMed ID: 17433663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.
    Dong J; Tang Y; Nzihou A; Chi Y; Weiss-Hortala E; Ni M
    Sci Total Environ; 2018 Jun; 626():744-753. PubMed ID: 29396338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor.
    Luo S; Xiao B; Hu Z; Liu S; Guan Y; Cai L
    Bioresour Technol; 2010 Aug; 101(16):6517-20. PubMed ID: 20363619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of bagasse waste management options.
    Kiatkittipong W; Wongsuchoto P; Pavasant P
    Waste Manag; 2009 May; 29(5):1628-33. PubMed ID: 19136243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of LCA in selecting the best MSW management system.
    De Feo G; Malvano C
    Waste Manag; 2009 Jun; 29(6):1901-15. PubMed ID: 19168344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of municipal solid waste management methods: Ankara case study.
    Ozeler D; Yetiş U; Demirer GN
    Environ Int; 2006 Apr; 32(3):405-11. PubMed ID: 16310852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.
    Galvagno S; Casciaro G; Casu S; Martino M; Mingazzini C; Russo A; Portofino S
    Waste Manag; 2009 Feb; 29(2):678-89. PubMed ID: 18657408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
    Khoo HH; Lim TZ; Tan RB
    Sci Total Environ; 2010 Feb; 408(6):1367-73. PubMed ID: 19926117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gasification characteristics of MSW and an ANN prediction model.
    Xiao G; Ni MJ; Chi Y; Jin BS; Xiao R; Zhong ZP; Huang YJ
    Waste Manag; 2009 Jan; 29(1):240-4. PubMed ID: 18420400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and product distribution of end of life tyres (ELTs) pyrolysis: a novel approach in polyisoprene and SBR thermal cracking.
    Al-Salem SM; Lettieri P; Baeyens J
    J Hazard Mater; 2009 Dec; 172(2-3):1690-4. PubMed ID: 19713038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of syngas quality for two-stage gasification of selected waste feedstocks.
    De Filippis P; Borgianni C; Paolucci M; Pochetti F
    Waste Manag; 2004; 24(6):633-9. PubMed ID: 15219922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.
    Li YP; Huang GH
    Sci Total Environ; 2010 Sep; 408(20):4296-308. PubMed ID: 20591470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG).
    Kantarelis E; Donaj P; Yang W; Zabaniotou A
    J Hazard Mater; 2009 Aug; 167(1-3):675-84. PubMed ID: 19237247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.