These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 19157836)

  • 1. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
    Fellner J; Rechberger H
    Waste Manag; 2009 May; 29(5):1495-503. PubMed ID: 19157836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of biogenic and fossil CO(2) emitted by waste incineration based on (14)CO(2) and mass balances.
    Mohn J; Szidat S; Fellner J; Rechberger H; Quartier R; Buchmann B; Emmenegger L
    Bioresour Technol; 2008 Sep; 99(14):6471-9. PubMed ID: 18164616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.
    Fellner J; Cencic O; Zellinger G; Rechberger H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):3-12. PubMed ID: 21382872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for determining the biomass content of waste.
    Staber W; Flamme S; Feltner J
    Waste Manag Res; 2008 Feb; 26(1):78-87. PubMed ID: 18338704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.
    Palstra SW; Meijer HA
    Bioresour Technol; 2010 May; 101(10):3702-10. PubMed ID: 20079631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fossil and biogenic CO₂ from waste incineration based on a yearlong radiocarbon study.
    Mohn J; Szidat S; Zeyer K; Emmenegger L
    Waste Manag; 2012 Aug; 32(8):1516-20. PubMed ID: 22542859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle design and use of biogenic and fossil plastic products.
    Chiellini E; Aage Hansen J
    Waste Manag Res; 2009 Mar; 27(2):99-100. PubMed ID: 19244408
    [No Abstract]   [Full Text] [Related]  

  • 8. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.
    Beckmann M; Pohl M; Bernhardt D; Gebauer K
    Waste Manag Res; 2012 Apr; 30(4):354-69. PubMed ID: 22467662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gases emission from municipal waste management: The role of separate collection.
    Calabrò PS
    Waste Manag; 2009 Jul; 29(7):2178-87. PubMed ID: 19318239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels.
    Garcés D; Díaz E; Sastre H; Ordóñez S; González-LaFuente JM
    Waste Manag; 2016 Jan; 47(Pt B):164-73. PubMed ID: 26318421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 as a carbon neutral fuel source via enhanced biomass gasification.
    Butterman HC; Castaldi MJ
    Environ Sci Technol; 2009 Dec; 43(23):9030-7. PubMed ID: 19943684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forest products decomposition in municipal solid waste landfills.
    Barlaz MA
    Waste Manag; 2006; 26(4):321-33. PubMed ID: 16406564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of fossil organic matter in contaminated sediments from an industrial watershed: validation of the quantitative multimolecular approach by radiocarbon analysis.
    Jeanneau L; Faure P
    Sci Total Environ; 2010 Sep; 408(19):4251-6. PubMed ID: 20579692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of regional bioenergy recovery by local methane fermentation thermal recycling systems.
    Wong LF; Fujita T; Xu K
    Waste Manag; 2008 Nov; 28(11):2259-70. PubMed ID: 18166448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.
    Steubing B; Zah R; Ludwig C
    Environ Sci Technol; 2012 Jan; 46(1):164-71. PubMed ID: 22091634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.
    Rakowski AZ; Nakamura T; Pazdur A
    J Environ Radioact; 2008 Oct; 99(10):1558-65. PubMed ID: 18272268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biogenic content of process streams from mechanical-biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?
    Séverin M; Velis CA; Longhurst PJ; Pollard SJ
    Waste Manag; 2010 Jul; 30(7):1171-82. PubMed ID: 20116991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term sampling of CO(2) from waste-to-energy plants: (14)C determination methodology, data variation and uncertainty.
    Fuglsang K; Pedersen NH; Larsen AW; Astrup TF
    Waste Manag Res; 2014 Feb; 32(2):115-23. PubMed ID: 24519225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.