These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19157837)

  • 21. Cross-current leaching of indium from end-of-life LCD panels.
    Rocchetti L; Amato A; Fonti V; Ubaldini S; De Michelis I; Kopacek B; Vegliò F; Beolchini F
    Waste Manag; 2015 Aug; 42():180-7. PubMed ID: 25997989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beneficiation and classification of ITO concentrate from waste LCD panel for industrial-scale indium extraction.
    Park JR; Lee CG; Swain B
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90209-90222. PubMed ID: 36976472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new technology for recycling materials from waste printed circuit boards.
    Zhou Y; Qiu K
    J Hazard Mater; 2010 Mar; 175(1-3):823-8. PubMed ID: 19939558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of valuable components from waste LCD panel through a dry physical method.
    Wang S; He Y; Zhang T; Zhang G
    Waste Manag; 2017 Jun; 64():255-262. PubMed ID: 28365276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards.
    Zheng Y; Shen Z; Ma S; Cai C; Zhao X; Xing Y
    J Hazard Mater; 2009 Oct; 170(2-3):978-82. PubMed ID: 19520504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.
    Wang R; Xu Z
    J Hazard Mater; 2016 Jan; 302():45-56. PubMed ID: 26444486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid thermal-biological recycling route for efficient extraction of metals and metalloids from end-of-life liquid crystal displays (LCDs).
    Parsa A; Bahaloo Horeh N; Mousavi SM
    Chemosphere; 2024 Mar; 352():141408. PubMed ID: 38336041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indium recovery from spent liquid crystal displays by using hydrometallurgical methods and microwave pyrolysis.
    Huang YF; Wang SY; Lo SL
    Chemosphere; 2021 Oct; 280():130905. PubMed ID: 34162103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
    Savvilotidou V; Antoniou A; Gidarakos E
    Waste Manag; 2017 Jan; 59():394-402. PubMed ID: 27742228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized indium solubilization from LCD panels using H
    Houssaine Moutiy E; Tran LH; Mueller KK; Coudert L; Blais JF
    Waste Manag; 2020 Aug; 114():53-61. PubMed ID: 32659687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels.
    Wang R; Xu Z
    J Hazard Mater; 2014 Aug; 278():311-9. PubMed ID: 24992456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.
    Wang R; Chen Y; Xu Z
    Environ Sci Technol; 2015 May; 49(10):5999-6008. PubMed ID: 25915068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the acidophilic microbial community's adaptation for enhancement indium bioleaching from high pulp density shredded discarded LCD panels.
    Constantin A; Pourhossein F; Ray D; Farnaud S
    J Environ Manage; 2024 Aug; 365():121521. PubMed ID: 38959774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Waste explosives and other hazardous materials--hazard potential and remedial measures: an overview.
    Pandey RK; Asthana SN; Bhattacharya B; Tiwari I; Ghole VS
    J Environ Sci Eng; 2007 Jul; 49(3):195-202. PubMed ID: 18476443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal and recovery attempt of liquid crystal from waste LCD panels using subcritical water.
    Izhar S; Yoshida H; Nishio E; Utsumi Y; Kakimori N
    Waste Manag; 2019 Jun; 92():15-20. PubMed ID: 31160022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of reutilization technology to waste from liquid crystal display (LCD) industry.
    Liu WT; Li KC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(5):579-86. PubMed ID: 20390905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating the hydration properties of paste containing thin film transistor liquid crystal display waste glass.
    Lin KL; Wang NF; Shie JL; Lee TC; Lee C
    J Hazard Mater; 2008 Nov; 159(2-3):471-5. PubMed ID: 18375057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.