BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19157843)

  • 1. Development of an on-line SPR-digestion-nanoLC-MS/MS system for the quantification and identification of interferon-gamma in plasma.
    Stigter EC; de Jong GJ; van Bennekom WP
    Biosens Bioelectron; 2009 Mar; 24(7):2184-90. PubMed ID: 19157843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved coating for the isolation and quantitation of interferon-gamma in spiked plasma using surface plasmon resonance (SPR).
    Stigter EC; de Jong GJ; van Bennekom WP
    Biosens Bioelectron; 2005 Sep; 21(3):474-82. PubMed ID: 16076437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system.
    Slysz GW; Lewis DF; Schriemer DC
    J Proteome Res; 2006 Aug; 5(8):1959-66. PubMed ID: 16889418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Array-based spectral SPR biosensor: analysis of mumps virus infection.
    Yuk JS; Ha KS
    Methods Mol Biol; 2009; 503():37-47. PubMed ID: 19151935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions.
    Hansson KM; Johansen K; Wetterö J; Klenkar G; Benesch J; Lundström I; Lindahl TL; Tengvall P
    Biosens Bioelectron; 2007 Sep; 23(2):261-8. PubMed ID: 17548188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance-enabled mass spectrometry arrays.
    Nedelkov D; Tubbs KA; Nelson RW
    Electrophoresis; 2006 Sep; 27(18):3671-5. PubMed ID: 16915566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma--material selection and protein immobilization optimization.
    Vaisocherová H; Zhang Z; Yang W; Cao Z; Cheng G; Taylor AD; Piliarik M; Homola J; Jiang S
    Biosens Bioelectron; 2009 Mar; 24(7):1924-30. PubMed ID: 19036575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics.
    Hardouin J; Duchateau M; Joubert-Caron R; Caron M
    Rapid Commun Mass Spectrom; 2006; 20(21):3236-44. PubMed ID: 17016832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated SPR-LC-MS/MS system for protein interaction analysis.
    Hayano T; Yamauchi Y; Asano K; Tsujimura T; Hashimoto S; Isobe T; Takahashi N
    J Proteome Res; 2008 Sep; 7(9):4183-90. PubMed ID: 18652503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers.
    Arima Y; Teramura Y; Takiguchi H; Kawano K; Kotera H; Iwata H
    Methods Mol Biol; 2009; 503():3-20. PubMed ID: 19151933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of a SAW-biosensor with MALDI mass spectrometric analysis.
    Treitz G; Gronewold TM; Quandt E; Zabe-Kühn M
    Biosens Bioelectron; 2008 May; 23(10):1496-502. PubMed ID: 18316185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisited BIA-MS combination: entire "on-a-chip" processing leading to the proteins identification at low femtomole to sub-femtomole levels.
    Boireau W; Rouleau A; Lucchi G; Ducoroy P
    Biosens Bioelectron; 2009 Jan; 24(5):1121-7. PubMed ID: 18829299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor.
    Mitchell JS; Lowe TE
    Biosens Bioelectron; 2009 Mar; 24(7):2177-83. PubMed ID: 19117747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput SPR sensor for food safety.
    Piliarik M; Párová L; Homola J
    Biosens Bioelectron; 2009 Jan; 24(5):1399-404. PubMed ID: 18809310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance mass spectrometry: recent progress and outlooks.
    Nedelkov D; Nelson RW
    Trends Biotechnol; 2003 Jul; 21(7):301-5. PubMed ID: 12837614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.
    Tang L; Kwon HJ; Kang KA
    Biotechnol Bioeng; 2004 Dec; 88(7):869-79. PubMed ID: 15515165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.