These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19157988)

  • 1. SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design.
    Smith J; Stein V
    Comput Biol Chem; 2009 Apr; 33(2):149-59. PubMed ID: 19157988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites.
    Ridder L; Wagener M
    ChemMedChem; 2008 May; 3(5):821-32. PubMed ID: 18311745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction site mapping of xenobiotic biotransformations.
    Boyer S; Arnby CH; Carlsson L; Smith J; Stein V; Glen RC
    J Chem Inf Model; 2007; 47(2):583-90. PubMed ID: 17302400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist.
    Cruciani G; Carosati E; De Boeck B; Ethirajulu K; Mackie C; Howe T; Vianello R
    J Med Chem; 2005 Nov; 48(22):6970-9. PubMed ID: 16250655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for rapid metabolite profiling of drug candidates in fresh hepatocytes using liquid chromatography coupled with a hybrid quadrupole linear ion trap.
    Gao H; Materne OL; Howe DL; Brummel CL
    Rapid Commun Mass Spectrom; 2007; 21(22):3683-93. PubMed ID: 17937450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site of metabolism prediction for six biotransformations mediated by cytochromes P450.
    Zheng M; Luo X; Shen Q; Wang Y; Du Y; Zhu W; Jiang H
    Bioinformatics; 2009 May; 25(10):1251-8. PubMed ID: 19286831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for enzyme design.
    Zhu X; Lai L
    J Comput Chem; 2009 Jan; 30(2):256-67. PubMed ID: 18615422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach.
    Korolev D; Balakin KV; Nikolsky Y; Kirillov E; Ivanenkov YA; Savchuk NP; Ivashchenko AA; Nikolskaya T
    J Med Chem; 2003 Aug; 46(17):3631-43. PubMed ID: 12904067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early prediction of drug metabolism and toxicity: systems biology approach and modeling.
    Bugrim A; Nikolskaya T; Nikolsky Y
    Drug Discov Today; 2004 Feb; 9(3):127-35. PubMed ID: 14960390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis.
    Pitkänen E; Akerlund A; Rantanen A; Jouhten P; Ukkonen E
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolites and pathway flexibility.
    Dandekar T; Schmidt S
    In Silico Biol; 2005; 5(2):103-10. PubMed ID: 15972010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic networks: enzyme function and metabolite structure.
    Hatzimanikatis V; Li C; Ionita JA; Broadbelt LJ
    Curr Opin Struct Biol; 2004 Jun; 14(3):300-6. PubMed ID: 15193309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of metabolic pathway databases based on chemical substructure search.
    Félix L; Valiente G
    Biomol Eng; 2007 Sep; 24(3):327-35. PubMed ID: 17433774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heuristics for chemical compound matching.
    Hattori M; Okuno Y; Goto S; Kanehisa M
    Genome Inform; 2003; 14():144-53. PubMed ID: 15706529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting ADME properties and side effects: the BioPrint approach.
    Krejsa CM; Horvath D; Rogalski SL; Penzotti JE; Mao B; Barbosa F; Migeon JC
    Curr Opin Drug Discov Devel; 2003 Jul; 6(4):470-80. PubMed ID: 12951810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic determination of reaction mappings and reaction center information. 2. Validation on a biochemical reaction database.
    Apostolakis J; Sacher O; Körner R; Gasteiger J
    J Chem Inf Model; 2008 Jun; 48(6):1190-8. PubMed ID: 18533714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo metabolite detection and identification in drug discovery via LC-MS/MS with data-dependent scanning and postacquisition data mining.
    Triolo A; Altamura M; Dimoulas T; Guidi A; Lecci A; Tramontana M
    J Mass Spectrom; 2005 Dec; 40(12):1572-82. PubMed ID: 16320289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment formal concept analysis accurately classifies compounds with closely related biological activities.
    Krüger F; Lounkine E; Bajorath J
    ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.