These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19158009)

  • 1. Physical methods for investigating structural colours in biological systems.
    Vukusic P; Stavenga DG
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S133-48. PubMed ID: 19158009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protean palette: colour materials and mixing in birds and butterflies.
    Shawkey MD; Morehouse NI; Vukusic P
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S221-31. PubMed ID: 19141430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many variations on a few themes: a broader look at development of iridescent scales (and feathers).
    Ghiradella HT; Butler MW
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S243-51. PubMed ID: 19141432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photonic heterostructure produces diverse iridescent colours in duck wing patches.
    Eliason CM; Shawkey MD
    J R Soc Interface; 2012 Sep; 9(74):2279-89. PubMed ID: 22491981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin.
    Maia R; Caetano JV; Báo SN; Macedo RH
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S203-11. PubMed ID: 19141431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in structural and pigmentary colours in response to cold stress in Polyommatus icarus butterflies.
    Kertész K; Piszter G; Horváth ZE; Bálint Z; Biró LP
    Sci Rep; 2017 Apr; 7(1):1118. PubMed ID: 28442788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.
    Wilts BD; Matsushita A; Arikawa K; Stavenga DG
    J R Soc Interface; 2015 Oct; 12(111):20150717. PubMed ID: 26446560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iridescence from photonic crystals and its suppression in butterfly scales.
    Poladian L; Wickham S; Lee K; Large MC
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S233-42. PubMed ID: 18980932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures.
    Piszter G; Kertész K; Bálint Z; Biró LP
    R Soc Open Sci; 2023 Apr; 10(4):221487. PubMed ID: 37035285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.
    Piszter G; Kertész K; Bálint Z; Biró LP
    PLoS One; 2016; 11(11):e0165857. PubMed ID: 27832120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical costs and benefits of disorder in biological photonic crystals.
    Mouchet SR; Luke S; McDonald LT; Vukusic P
    Faraday Discuss; 2020 Oct; 223():9-48. PubMed ID: 33000817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings.
    Barrera-Patiño CP; Vollet-Filho JD; Teixeira-Rosa RG; Quiroz HP; Dussan A; Inada NM; Bagnato VS; Rey-González RR
    Sci Rep; 2020 Apr; 10(1):5786. PubMed ID: 32238903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae).
    Shawkey MD; Hauber ME; Estep LK; Hill GE
    J R Soc Interface; 2006 Dec; 3(11):777-86. PubMed ID: 17015306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural origin of the colored reflections from the black-billed magpie feathers.
    Vigneron JP; Colomer JF; Rassart M; Ingram AL; Lousse V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021914. PubMed ID: 16605369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeographical patterns in the structural blue of male Polyommatus icarus butterflies.
    Kertész K; Piszter G; Bálint Z; Biró LP
    Sci Rep; 2019 Feb; 9(1):2338. PubMed ID: 30787341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifractal Characterization of Butterfly Wings Scales.
    Ţălu Ş; Morozov IA; Sobola D; Škarvada P
    Bull Math Biol; 2018 Nov; 80(11):2856-2870. PubMed ID: 30194522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990).
    Ingram AL; Parker AR
    Philos Trans R Soc Lond B Biol Sci; 2008 Jul; 363(1502):2465-80. PubMed ID: 18331987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.