These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19158187)

  • 1. Finding 3D motifs in ribosomal RNA structures.
    Apostolico A; Ciriello G; Guerra C; Heitsch CE; Hsiao C; Williams LD
    Nucleic Acids Res; 2009 Mar; 37(4):e29. PubMed ID: 19158187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrangement of 3D structural motifs in ribosomal RNA.
    Sargsyan K; Lim C
    Nucleic Acids Res; 2010 Jun; 38(11):3512-22. PubMed ID: 20159997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kink-turn: a new RNA secondary structure motif.
    Klein DJ; Schmeing TM; Moore PB; Steitz TA
    EMBO J; 2001 Aug; 20(15):4214-21. PubMed ID: 11483524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal RNA kink-turn motif--a flexible molecular hinge.
    Rázga F; Spackova N; Réblova K; Koca J; Leontis NB; Sponer J
    J Biomol Struct Dyn; 2004 Oct; 22(2):183-94. PubMed ID: 15317479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA.
    Hershkovitz E; Tannenbaum E; Howerton SB; Sheth A; Tannenbaum A; Williams LD
    Nucleic Acids Res; 2003 Nov; 31(21):6249-57. PubMed ID: 14576313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structures of rRNAs from all three domains of life.
    Petrov AS; Bernier CR; Gulen B; Waterbury CC; Hershkovits E; Hsiao C; Harvey SC; Hud NV; Fox GE; Wartell RM; Williams LD
    PLoS One; 2014; 9(2):e88222. PubMed ID: 24505437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology independent comparison of RNA 3D structures using the CLICK algorithm.
    Nguyen MN; Sim AY; Wan Y; Madhusudhan MS; Verma C
    Nucleic Acids Res; 2017 Jan; 45(1):e5. PubMed ID: 27634929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lonepair triloop: a new motif in RNA structure.
    Lee JC; Cannone JJ; Gutell RR
    J Mol Biol; 2003 Jan; 325(1):65-83. PubMed ID: 12473452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The archaeal sRNA binding protein L7Ae has a 3D structure very similar to that of its eukaryal counterpart while having a broader RNA-binding specificity.
    Charron C; Manival X; Cléry A; Senty-Ségault V; Charpentier B; Marmier-Gourrier N; Branlant C; Aubry A
    J Mol Biol; 2004 Sep; 342(3):757-73. PubMed ID: 15342235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment.
    Zhong C; Tang H; Zhang S
    Nucleic Acids Res; 2010 Oct; 38(18):e176. PubMed ID: 20696653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui.
    Matadeen R; Sergiev P; Leonov A; Pape T; van der Sluis E; Mueller F; Osswald M; von Knoblauch K; Brimacombe R; Bogdanov A; van Heel M; Dontsova O
    J Mol Biol; 2001 Apr; 307(5):1341-9. PubMed ID: 11292346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel base triples in RNA structures revealed by graph theoretical searching methods.
    Firdaus-Raih M; Harrison AM; Willett P; Artymiuk PJ
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S2. PubMed ID: 22373013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of receptors for UNCG and GNRA Z-turns and their occurrence in rRNA.
    D'Ascenzo L; Vicens Q; Auffinger P
    Nucleic Acids Res; 2018 Sep; 46(15):7989-7997. PubMed ID: 29986118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural motifs in ribosomal RNAs: implications for RNA design and genomics.
    Zorn J; Gan HH; Shiffeldrim N; Schlick T
    Biopolymers; 2004 Feb; 73(3):340-7. PubMed ID: 14755570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.
    Mallik S; Kundu S
    J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted.
    Tu D; Blaha G; Moore PB; Steitz TA
    Extremophiles; 2005 Dec; 9(6):427-35. PubMed ID: 15970993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics and molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-turns, loops, and tetraloops.
    Krepl M; Réblová K; Koča J; Sponer J
    J Phys Chem B; 2013 May; 117(18):5540-55. PubMed ID: 23534440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of interactions between ribosomal proteins and RNA structural motifs.
    Ciriello G; Gallina C; Guerra C
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S41. PubMed ID: 20122215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.