These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19158794)

  • 41. The paradigm shift in Antarctic ice sheet modelling.
    Pattyn F
    Nat Commun; 2018 Jul; 9(1):2728. PubMed ID: 30013142
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Benthic fauna declined on a whitening Antarctic continental shelf.
    Pineda-Metz SEA; Gerdes D; Richter C
    Nat Commun; 2020 May; 11(1):2226. PubMed ID: 32376915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. East Antarctic cooling induced by decadal changes in Madden-Julian oscillation during austral summer.
    Hsu PC; Fu Z; Murakami H; Lee JY; Yoo C; Johnson NC; Chang CH; Liu Y
    Sci Adv; 2021 Jun; 7(26):. PubMed ID: 34162543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First-year sea ice leads to an increase in dimethyl sulfide-induced particle formation in the Antarctic Peninsula.
    Jang E; Park KT; Yoon YJ; Kim K; Gim Y; Chung HY; Lee K; Choi J; Park J; Park SJ; Koo JH; Fernandez RP; Saiz-Lopez A
    Sci Total Environ; 2022 Jan; 803():150002. PubMed ID: 34482143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acceleration of climate warming and plant dynamics in Antarctica.
    Cannone N; Malfasi F; Favero-Longo SE; Convey P; Guglielmin M
    Curr Biol; 2022 Apr; 32(7):1599-1606.e2. PubMed ID: 35167803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016.
    Wang G; Hendon HH; Arblaster JM; Lim EP; Abhik S; van Rensch P
    Nat Commun; 2019 Jan; 10(1):13. PubMed ID: 30600314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming.
    Parrenin F; Masson-Delmotte V; Köhler P; Raynaud D; Paillard D; Schwander J; Barbante C; Landais A; Wegner A; Jouzel J
    Science; 2013 Mar; 339(6123):1060-3. PubMed ID: 23449589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antarctic Peninsula warm winters influenced by Tasman Sea temperatures.
    Sato K; Inoue J; Simmonds I; Rudeva I
    Nat Commun; 2021 Mar; 12(1):1497. PubMed ID: 33686073
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent temperature trends in the Antarctic.
    Turner J; King JC; Lachlan-Cope TA; Jones PD
    Nature; 2002 Jul; 418(6895):291-2; discussion 292. PubMed ID: 12124614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent.
    Nicol S; Pauly T; Bindoff NL; Wright S; Thiele D; Hosie GW; Strutton PG; Woehler E
    Nature; 2000 Aug; 406(6795):504-7. PubMed ID: 10952309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of sea-ice expansion in the Indian Ocean sector of Antarctica: Insights from satellite observation and model reanalysis.
    Jena B; Kumar A; Ravichandran M; Kern S
    PLoS One; 2018; 13(10):e0203222. PubMed ID: 30281612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate change enhances primary production in the western Antarctic Peninsula.
    Moreau S; Mostajir B; Bélanger S; Schloss IR; Vancoppenolle M; Demers S; Ferreyra GA
    Glob Chang Biol; 2015 Jun; 21(6):2191-205. PubMed ID: 25626857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf.
    Clark NA; Williams M; Hill DJ; Quilty PG; Smellie JL; Zalasiewicz J; Leng MJ; Ellis MA
    Naturwissenschaften; 2013 Aug; 100(8):699-722. PubMed ID: 23828612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface warming from altitudinal and latitudinal amplification over Antarctica since the International Geophysical Year.
    Xie A; Zhu J; Qin X; Wang S; Xu B; Wang Y
    Sci Rep; 2023 Jun; 13(1):9536. PubMed ID: 37308500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential methane reservoirs beneath Antarctica.
    Wadham JL; Arndt S; Tulaczyk S; Stibal M; Tranter M; Telling J; Lis GP; Lawson E; Ridgwell A; Dubnick A; Sharp MJ; Anesio AM; Butler CE
    Nature; 2012 Aug; 488(7413):633-7. PubMed ID: 22932387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using sea-ice to calibrate a dynamic trophic model for the Western Antarctic Peninsula.
    Dahood A; Watters GM; de Mutsert K
    PLoS One; 2019; 14(4):e0214814. PubMed ID: 30939156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System - Version 5 (GEOS-5).
    Li F; Vikhliaev YV; Newman PA; Pawson S; Perlwitz J; Waugh DW; Douglass AR
    J Clim; 2016; 29(9):3199-3218. PubMed ID: 32742076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.