These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 19159128)

  • 1. Mass recovery methods for trichloroethylene in plant tissue.
    Gopalakrishnan G; Werth CJ; Negri MC
    Environ Toxicol Chem; 2009 Jun; 28(6):1185-90. PubMed ID: 19159128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.
    Lewis J; Qvarfort U; Sjöström J
    Int J Phytoremediation; 2015; 17(1-6):9-15. PubMed ID: 25174420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala.
    Doty SL; Shang TQ; Wilson AM; Moore AL; Newman LA; Strand SE; Gordon MP
    Water Res; 2003 Jan; 37(2):441-9. PubMed ID: 12502073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatilization of trichloroethylene from trees and soil: measurement and scaling approaches.
    Doucette W; Klein H; Chard J; Dupont R; Plaehn W; Bugbee B
    Environ Sci Technol; 2013 Jun; 47(11):5813-20. PubMed ID: 23641774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Zea mays L. in phytoremediation of trichloroethylene.
    Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation.
    Vieth A; Müller J; Strauch G; Kästner M; Gehre M; Meckenstock RU; Richnow HH
    Isotopes Environ Health Stud; 2003 Jun; 39(2):113-24. PubMed ID: 12872803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant tissue analysis for explosive compounds in phytoremediation and phytoforensics.
    Karnjanapiboonwong A; Mu R; Yuan Y; Shi H; Ma Y; Burken JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(14):2219-29. PubMed ID: 22934993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic biodegradation of trichloroethene without auxiliary substrates.
    Schmidt KR; Gaza S; Voropaev A; Ertl S; Tiehm A
    Water Res; 2014 Aug; 59():112-8. PubMed ID: 24793109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichloroethylene uptake into fruits and vegetables: three-year field monitoring study.
    Doucette WJ; Chard JK; Fabrizius H; Crouch C; Petersen MR; Carlsen TE; Chard BK; Gorder K
    Environ Sci Technol; 2007 Apr; 41(7):2505-9. PubMed ID: 17438807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotopic and geochemical assessment of in situ biodegradation of chlorinated hydrocarbons.
    Kirtland BC; Aelion CM; Stone PA; Hunkeler D
    Environ Sci Technol; 2003 Sep; 37(18):4205-12. PubMed ID: 14524454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.
    Wilcox JD; Johnson KM
    Environ Monit Assess; 2016 Oct; 188(10):587. PubMed ID: 27665571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and specific detection of a trichloroethylene-degrading methanotroph, Methylocystis sp. strain M, by a most probable number-polymerase chain reaction method.
    Kikuchi T; Iwasaki K; Nishihara H; Takamura Y; Yagi O
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2673-81. PubMed ID: 11826963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.