These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19159311)

  • 1. Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse.
    Decognet V; Bardin M; Trottin-Caudal Y; Nicot PC
    Phytopathology; 2009 Feb; 99(2):185-93. PubMed ID: 19159311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable predominance of a small number of genotypes in greenhouse populations of Botrytis cinerea.
    Bardin M; Decognet V; Nicot PC
    Phytopathology; 2014 Aug; 104(8):859-64. PubMed ID: 24521484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different products for biological control of Botrytis cinerea examined on wounded stem tissue of tomato plants.
    Gielen S; Aerts R; Seels B
    Commun Agric Appl Biol Sci; 2004; 69(4):641-7. PubMed ID: 15756851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold.
    Rodríguez A; Acosta A; Rodríguez C
    World J Microbiol Biotechnol; 2014 Sep; 30(9):2397-406. PubMed ID: 24817605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29.
    Wu F; Qi J; Meng X; Jin W
    Plant Sci; 2020 Nov; 300():110610. PubMed ID: 33180702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen
    Mercier A; Simon A; Lapalu N; Giraud T; Bardin M; Walker AS; Viaud M; Gladieux P
    Phytopathology; 2021 Dec; 111(12):2355-2366. PubMed ID: 33829853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum.
    Abro MA; Lecompte F; Bryone F; Nicot PC
    Phytopathology; 2013 Mar; 103(3):261-7. PubMed ID: 23151188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool.
    Lecompte F; Nicot PC; Ripoll J; Abro MA; Raimbault AK; Lopez-Lauri F; Bertin N
    Ann Bot; 2017 Mar; 119(5):931-943. PubMed ID: 28065923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to Boscalid in
    Liu S; Fu L; Tan H; Jiang J; Che Z; Tian Y; Chen G
    Plant Dis; 2021 Mar; 105(3):628-635. PubMed ID: 32820676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Report of
    Mamode Ally N; Neetoo H; Ranghoo-Sanmukhiya M; Hardowar S; Vally V; Bunwaree A; Maudarbaccus F; Coutinho TA; Vojvodić M; Bulajic A
    Plant Dis; 2021 Mar; ():. PubMed ID: 33673766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the initial events of infection of Botrytis cinerea strains isolated from tomato and grape.
    Cotoras M; Silva E
    Mycologia; 2005; 97(2):485-92. PubMed ID: 16396356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Differentiation and Clonal Expansion of Chinese
    Diao Y; Larsen MM; Kamvar ZN; Zhang C; Li S; Wang W; Lin D; Peng Q; Knaus BJ; Foster ZSL; Grünwald NJ; Liu X
    Phytopathology; 2020 Feb; 110(2):428-439. PubMed ID: 31454305
    [No Abstract]   [Full Text] [Related]  

  • 16. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea.
    ten Have A; Mulder W; Visser J; van Kan JA
    Mol Plant Microbe Interact; 1998 Oct; 11(10):1009-16. PubMed ID: 9768518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea.
    Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q
    World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Profiling Data of
    Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A
    Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.