These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19159313)
1. Environmental control in tea fields to reduce infection by Pseudomonas syringae pv. theae. Tomihama T; Nonaka T; Nishi Y; Arai K Phytopathology; 2009 Feb; 99(2):209-16. PubMed ID: 19159313 [TBL] [Abstract][Full Text] [Related]
2. Ecological impact of solar ultraviolet-B (UV-B: 320-290 nm) radiation on Corynebacterium aquaticum and Xanthomonas sp. colonization on tea phyllosphere in relation to blister blight disease incidence in the field. Gunasekera TS; Paul ND Lett Appl Microbiol; 2007 May; 44(5):513-9. PubMed ID: 17451518 [TBL] [Abstract][Full Text] [Related]
3. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Bull CT; Clarke CR; Cai R; Vinatzer BA; Jardini TM; Koike ST Phytopathology; 2011 Jul; 101(7):847-58. PubMed ID: 21323469 [TBL] [Abstract][Full Text] [Related]
4. Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves. Dulla GF; Lindow SE ISME J; 2009 Jul; 3(7):825-34. PubMed ID: 19340082 [TBL] [Abstract][Full Text] [Related]
5. Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection. Senthilkumar P; Thirugnanasambantham K; Mandal AK Appl Biochem Biotechnol; 2012 Dec; 168(7):1917-27. PubMed ID: 23065401 [TBL] [Abstract][Full Text] [Related]
6. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Braun SD; Völksch B; Nüske J; Spiteller D Chembiochem; 2008 Aug; 9(12):1913-20. PubMed ID: 18655083 [TBL] [Abstract][Full Text] [Related]
7. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Freeman BC; Beattie GA Mol Plant Microbe Interact; 2009 Jul; 22(7):857-67. PubMed ID: 19522568 [TBL] [Abstract][Full Text] [Related]
8. [Synthesis of surfactants by Pseudomonas syringae pv. coronafaciens and Psedomonas syringae pv. atrofaciens strains]. Hvozdiak RI; Pasichnyk LA; Vashchenko LM; Pokyn'broda TIa; Karpenko OV Mikrobiol Z; 2009; 71(3):10-4. PubMed ID: 19938599 [TBL] [Abstract][Full Text] [Related]
9. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Wensing A; Braun SD; Büttner P; Expert D; Völksch B; Ullrich MS; Weingart H Appl Environ Microbiol; 2010 May; 76(9):2704-11. PubMed ID: 20208028 [TBL] [Abstract][Full Text] [Related]
10. [Epiphytic phase of Erwinia amylovora and Pseudomonas syringae pv. syringae on orchard weeds]. Gvozdiak RI; Lukach MI Mikrobiol Z; 2001; 63(3):43-50. PubMed ID: 11785263 [TBL] [Abstract][Full Text] [Related]
11. Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Nemchinov LG; Shabala L; Shabala S Plant Cell Physiol; 2008 Jan; 49(1):40-6. PubMed ID: 18048411 [TBL] [Abstract][Full Text] [Related]
12. Study of the effect of Ammoides pusilla (Brot.) Breist, essential oil against Pseudomonas sp. Laouer H; Zerroug MM; Chaker AN; Bouzerzour H Commun Agric Appl Biol Sci; 2004; 69(4):619-24. PubMed ID: 15756848 [TBL] [Abstract][Full Text] [Related]
13. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Renzi M; Copini P; Taddei AR; Rossetti A; Gallipoli L; Mazzaglia A; Balestra GM Phytopathology; 2012 Sep; 102(9):827-40. PubMed ID: 22713076 [TBL] [Abstract][Full Text] [Related]
14. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
15. Transposon insertion in the ftsK gene impairs in planta growth and lesion-forming abilities in Pseudomonas syringae pv. syringae B728a. Kinscherf TG; Hirano SS; Willis DK Mol Plant Microbe Interact; 2000 Nov; 13(11):1263-5. PubMed ID: 11059493 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Gurian-Sherman D; Lindow SE Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China. Wang ZH; Zhao ZX; Hong N; Ni D; Cai L; Xu WX; Xiao YN Plant Dis; 2017 Oct; 101(10):1802-1811. PubMed ID: 30676920 [TBL] [Abstract][Full Text] [Related]
18. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Fan J; Crooks C; Lamb C Plant J; 2008 Jan; 53(2):393-9. PubMed ID: 17971037 [TBL] [Abstract][Full Text] [Related]
19. [Properties of bacteria of pathovars of Pseudomonas syringae affecting cereals]. Pasichnyk LA Mikrobiol Z; 2000; 62(5):18-22. PubMed ID: 11247339 [TBL] [Abstract][Full Text] [Related]
20. [Serological heterogeneity of Pseudomonas syringae pv. atrofaciens strains and their ecological niches]. Pasichnik LA; Iakovleva LM; Gvozdiak RI; Vasilev VI Mikrobiologiia; 2003; 72(6):828-33. PubMed ID: 14768551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]