These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19159313)
21. In silico prediction of drug targets in phytopathogenic Pseudomonas syringae pv. phaseolicola: charting a course for agrigenomics translation research. Katara P; Grover A; Sharma V OMICS; 2012 Dec; 16(12):700-6. PubMed ID: 23215808 [TBL] [Abstract][Full Text] [Related]
22. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Badosa E; Ferre R; Planas M; Feliu L; Besalú E; Cabrefiga J; Bardají E; Montesinos E Peptides; 2007 Dec; 28(12):2276-85. PubMed ID: 17980935 [TBL] [Abstract][Full Text] [Related]
23. Separation of plant pathogens from different hosts and tissues by capillary electromigration techniques. Horká M; Horký J; Matousková H; Slais K Anal Chem; 2007 Dec; 79(24):9539-46. PubMed ID: 17997525 [TBL] [Abstract][Full Text] [Related]
24. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets. Wolf PF; Verreet A Commun Agric Appl Biol Sci; 2008; 73(2):57-68. PubMed ID: 19226742 [TBL] [Abstract][Full Text] [Related]
25. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Zhou H; Morgan RL; Guttman DS; Ma W Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870 [TBL] [Abstract][Full Text] [Related]
26. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Engelhardt S; Lee J; Gäbler Y; Kemmerling B; Haapalainen ML; Li CM; Wei Z; Keller H; Joosten M; Taira S; Nürnberger T Plant J; 2009 Feb; 57(4):706-17. PubMed ID: 18980650 [TBL] [Abstract][Full Text] [Related]
27. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Chapman JR; Taylor RK; Weir BS; Romberg MK; Vanneste JL; Luck J; Alexander BJ Phytopathology; 2012 Nov; 102(11):1034-44. PubMed ID: 22877312 [TBL] [Abstract][Full Text] [Related]
28. Detection and sequence analysis of an altered pectate lyase gene in Pseudomonas syringae pv. glycinea and related bacteria. Liao CH; Fett W; Tzean SS; Hoffman G Can J Microbiol; 2006 Nov; 52(11):1051-9. PubMed ID: 17215896 [TBL] [Abstract][Full Text] [Related]
29. New media for the semiselective isolation and enumeration of Xanthomonas campestris pv. mangiferaeindicae, the causal agent of mango bacterial black spot. Pruvost O; Roumagnac P; Gaube C; Chiroleu F; Gagnevin L J Appl Microbiol; 2005; 99(4):803-15. PubMed ID: 16162231 [TBL] [Abstract][Full Text] [Related]
30. Novel succinylated and large-sized osmoregulated periplasmic glucans of Pseudomonas syringae pv. syringae. Cho E; Jeon Y; Jung S Carbohydr Res; 2009 May; 344(8):996-1000. PubMed ID: 19358981 [TBL] [Abstract][Full Text] [Related]
31. Biological Control of Pseudomonas syringae pv. syringae, the Causal Agent of Basal Kernel Blight of Barley, by Antagonistic Pantoea agglomerans. Braun-Kiewnick A; Jacobsen BJ; Sands DC Phytopathology; 2000 Apr; 90(4):368-75. PubMed ID: 18944586 [TBL] [Abstract][Full Text] [Related]
32. [Basal bacteriosis of wheat and influence of agrotechnical methods on its spread]. Pasichnik LA; Patyka VF; Khodos SF; Vinnichuk TS Mikrobiol Z; 2012; 74(4):37-44. PubMed ID: 23088098 [TBL] [Abstract][Full Text] [Related]
34. Description of the Bacterium Causing Blight of Leek as Pseudomonas syringae pv. porri (pv. nov.). Samson R; Shafik H; Benjama A; Gardan L Phytopathology; 1998 Aug; 88(8):844-50. PubMed ID: 18944892 [TBL] [Abstract][Full Text] [Related]
35. [Studies on the variability of the phaseolotoxin production by Pseudomonas syringae pv. phaseolicola]. Völksch B; Laplace F; Fritsche W Zentralbl Mikrobiol; 1984; 139(2):109-18. PubMed ID: 6428075 [TBL] [Abstract][Full Text] [Related]
36. Screening of tea (Camellia sinensis) for trait-associated molecular markers. Mphangwe NI; Vorster J; Steyn JM; Nyirenda HE; Taylor NJ; Apostolides Z Appl Biochem Biotechnol; 2013 Sep; 171(2):437-49. PubMed ID: 23852798 [TBL] [Abstract][Full Text] [Related]
37. Soluble plant cell signals induce the expression of the type III secretion system of Pseudomonas syringae and upregulate the production of pilus protein HrpA. Haapalainen M; van Gestel K; Pirhonen M; Taira S Mol Plant Microbe Interact; 2009 Mar; 22(3):282-90. PubMed ID: 19245322 [TBL] [Abstract][Full Text] [Related]
38. [Pseudomonas genus bacteria on weeds]. Gvozdiak RI; Iakovleva LM; Pasichnik LA; Shcherbina TN; Ogorodnik LE Mikrobiol Z; 2005; 67(2):63-9. PubMed ID: 16018218 [TBL] [Abstract][Full Text] [Related]
39. Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO-111 against blister blight disease of tea. Sowndhararajan K; Marimuthu S; Manian S J Appl Microbiol; 2013 Jan; 114(1):209-18. PubMed ID: 23020645 [TBL] [Abstract][Full Text] [Related]
40. Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide. Ghods S; Sims IM; Moradali MF; Rehm BH Appl Environ Microbiol; 2015 Jun; 81(12):4026-36. PubMed ID: 25841017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]