BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 19159457)

  • 1. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing.
    Lefrançois P; Euskirchen GM; Auerbach RK; Rozowsky J; Gibson T; Yellman CM; Gerstein M; Snyder M
    BMC Genomics; 2009 Jan; 10():37. PubMed ID: 19159457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of transcription factor-binding sites in yeast using ChIP-Seq.
    Lefrançois P; Gallagher JE; Snyder M
    Methods Mol Biol; 2014; 1205():231-55. PubMed ID: 25213249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis.
    Ho JW; Bishop E; Karchenko PV; Nègre N; White KP; Park PJ
    BMC Genomics; 2011 Feb; 12():134. PubMed ID: 21356108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
    Chung D; Kuan PF; Li B; Sanalkumar R; Liang K; Bresnick EH; Dewey C; Keleş S
    PLoS Comput Biol; 2011 Jul; 7(7):e1002111. PubMed ID: 21779159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms.
    Borneman AR; Zhang ZD; Rozowsky J; Seringhaus MR; Gerstein M; Snyder M
    Funct Integr Genomics; 2007 Oct; 7(4):335-45. PubMed ID: 17638031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is this the right normalization? A diagnostic tool for ChIP-seq normalization.
    Angelini C; Heller R; Volkinshtein R; Yekutieli D
    BMC Bioinformatics; 2015 May; 16():150. PubMed ID: 25957089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using CisGenome to analyze ChIP-chip and ChIP-seq data.
    Ji H; Jiang H; Ma W; Wong WH
    Curr Protoc Bioinformatics; 2011 Mar; Chapter 2():Unit2.13. PubMed ID: 21400695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread misinterpretable ChIP-seq bias in yeast.
    Park D; Lee Y; Bhupindersingh G; Iyer VR
    PLoS One; 2013; 8(12):e83506. PubMed ID: 24349523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling ChIP sequencing in silico with applications.
    Zhang ZD; Rozowsky J; Snyder M; Chang J; Gerstein M
    PLoS Comput Biol; 2008 Aug; 4(8):e1000158. PubMed ID: 18725927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin.
    Ostrow AZ; Viggiani CJ; Aparicio JG; Aparicio OM
    Methods Mol Biol; 2015; 1300():155-68. PubMed ID: 25916712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiChIP: a high-throughput pipeline for integrative analysis of ChIP-Seq data.
    Yan H; Evans J; Kalmbach M; Moore R; Middha S; Luban S; Wang L; Bhagwate A; Li Y; Sun Z; Chen X; Kocher JP
    BMC Bioinformatics; 2014 Aug; 15(1):280. PubMed ID: 25128017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq.
    Luo C; Lam E
    Methods Mol Biol; 2014; 1112():177-93. PubMed ID: 24478015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.
    Raghav SK; Deplancke B
    Methods Mol Biol; 2012; 786():247-62. PubMed ID: 21938631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data.
    Gupta R; Wikramasinghe P; Bhattacharyya A; Perez FA; Pal S; Davuluri RV
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S65. PubMed ID: 20122241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.