BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 19159457)

  • 21. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W; Zhao H; Mancera E; Steinmetz LM; Snyder M
    Nature; 2010 Apr; 464(7292):1187-91. PubMed ID: 20237471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide in vivo cross-linking of sequence-specific transcription factors.
    Li XY; Biggin MD
    Methods Mol Biol; 2012; 809():3-26. PubMed ID: 22113265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.
    Chabbert CD; Adjalley SH; Steinmetz LM; Pelechano V
    Methods Mol Biol; 2018; 1689():177-194. PubMed ID: 29027175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RACS: rapid analysis of ChIP-Seq data for contig based genomes.
    Saettone A; Ponce M; Nabeel-Shah S; Fillingham J
    BMC Bioinformatics; 2019 Oct; 20(1):533. PubMed ID: 31664892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nucleosome-guided map of transcription factor binding sites in yeast.
    Narlikar L; Gordân R; Hartemink AJ
    PLoS Comput Biol; 2007 Nov; 3(11):e215. PubMed ID: 17997593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SNP-ChIP: a versatile and tag-free method to quantify changes in protein binding across the genome.
    Vale-Silva LA; Markowitz TE; Hochwagen A
    BMC Genomics; 2019 Jan; 20(1):54. PubMed ID: 30654749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq.
    Hu B; Petela N; Kurze A; Chan KL; Chapard C; Nasmyth K
    Nucleic Acids Res; 2015 Nov; 43(20):e132. PubMed ID: 26130708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining bacterial regulons using ChIP-seq.
    Myers KS; Park DM; Beauchene NA; Kiley PJ
    Methods; 2015 Sep; 86():80-8. PubMed ID: 26032817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments.
    Jain D; Baldi S; Zabel A; Straub T; Becker PB
    Nucleic Acids Res; 2015 Aug; 43(14):6959-68. PubMed ID: 26117547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology.
    Bolduc N; Lehman AP; Farmer A
    Curr Protoc Mol Biol; 2016 Oct; 116():7.28.1-7.28.26. PubMed ID: 27723085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide Mapping of Protein-DNA Interactions with ChEC-seq in Saccharomyces cerevisiae.
    Grünberg S; Zentner GE
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28605389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of chromatin structures on DNA processing for genomic analyses.
    Teytelman L; Ozaydin B; Zill O; Lefrançois P; Snyder M; Rine J; Eisen MB
    PLoS One; 2009 Aug; 4(8):e6700. PubMed ID: 19693276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques.
    Lei H; Fukushige T; Niu W; Sarov M; Reinke V; Krause M
    PLoS One; 2010 Dec; 5(12):e15898. PubMed ID: 21209968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collaborative Completion of Transcription Factor Binding Profiles via Local Sensitive Unified Embedding.
    Zhu L; Guo WL; Lu C; Huang DS
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):946-958. PubMed ID: 27845669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP).
    Kaufmann K; Muiño JM; Østerås M; Farinelli L; Krajewski P; Angenent GC
    Nat Protoc; 2010 Mar; 5(3):457-72. PubMed ID: 20203663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation.
    Yang J; Sun S; Zhang S; Gonzalez M; Dong Q; Chi Z; Chen YH; Li F
    PLoS Genet; 2018 Aug; 14(8):e1007572. PubMed ID: 30089114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq.
    Jakobsen JS; Bagger FO; Hasemann MS; Schuster MB; Frank AK; Waage J; Vitting-Seerup K; Porse BT
    BMC Genomics; 2015 Feb; 16(1):46. PubMed ID: 25652644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.