These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 19159500)
1. A new modelling approach to insect reproduction with same-shape reproduction distribution and rate summation: with particular reference to Russian wheat aphid. Ma ZS; Bechinski EJ Bull Entomol Res; 2009 Oct; 99(5):445-55. PubMed ID: 19159500 [TBL] [Abstract][Full Text] [Related]
2. Survival analysis approach to insect life table analysis and hypothesis testing: with particular reference to Russian wheat aphid (Diuraphis noxia (Mordvilko)) populations. Ma ZS Bull Entomol Res; 2010 Jun; 100(3):315-24. PubMed ID: 19941673 [TBL] [Abstract][Full Text] [Related]
3. Generalized aphid population growth models with immigration and cumulative-size dependent dynamics. Matis JH; Kiffe TR; Matis TI; Chattopadhyay C Math Biosci; 2008 Oct; 215(2):137-43. PubMed ID: 18715544 [TBL] [Abstract][Full Text] [Related]
4. Development, survival and reproduction of black citrus aphid, Toxoptera aurantii (Hemiptera: Aphididae), as a function of temperature. Wang JJ; Tsai JH Bull Entomol Res; 2001 Dec; 91(6):477-87. PubMed ID: 11818043 [TBL] [Abstract][Full Text] [Related]
5. Modeling the effects of developmental variation on insect phenology. Yurk BP; Powell JA Bull Math Biol; 2010 Aug; 72(6):1334-60. PubMed ID: 20108124 [TBL] [Abstract][Full Text] [Related]
6. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants. Miller TE J Anim Ecol; 2007 Jul; 76(4):722-9. PubMed ID: 17584378 [TBL] [Abstract][Full Text] [Related]
7. An implicit approach to model plant infestation by insect pests. Lopes C; Spataro T; Doursat C; Lapchin L; Arditi R J Theor Biol; 2007 Sep; 248(1):164-78. PubMed ID: 17582442 [TBL] [Abstract][Full Text] [Related]
8. Response of resistant and susceptible barley to infestations of five Diuraphis noxia (Homoptera: Aphididae) biotypes. Puterka GJ; Burd JD; Mornhinweg DW; Haley SD; Peairs FB J Econ Entomol; 2006 Dec; 99(6):2151-5. PubMed ID: 17195687 [TBL] [Abstract][Full Text] [Related]
9. Reproductive rates of Russian wheat aphid (Hemiptera: Aphididae) biotypes 1 and 2 on a susceptible and a resistant wheat at three temperature regimes. Randolph TL; Merrill SC; Peairs FB J Econ Entomol; 2008 Jun; 101(3):955-8. PubMed ID: 18613599 [TBL] [Abstract][Full Text] [Related]
10. Stochastic modeling of aphid population growth with nonlinear, power-law dynamics. Matis JH; Kiffe TR; Matis TI; Stevenson DE Math Biosci; 2007 Aug; 208(2):469-94. PubMed ID: 17306309 [TBL] [Abstract][Full Text] [Related]
11. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G; Ma CS J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [TBL] [Abstract][Full Text] [Related]
12. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans. Ghanbarnia K; Dilantha Fernando WG; Crow G Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586 [TBL] [Abstract][Full Text] [Related]
13. Growth of Corophium volutator under laboratory conditions. Kater BJ; Jol JG; Smit MG Arch Environ Contam Toxicol; 2008 Apr; 54(3):440-6. PubMed ID: 17960451 [TBL] [Abstract][Full Text] [Related]
14. Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Régnière J; Powell J; Bentz B; Nealis V J Insect Physiol; 2012 May; 58(5):634-47. PubMed ID: 22310012 [TBL] [Abstract][Full Text] [Related]
15. Estimating development of Aphis pomi (De Geer) (Homoptera: Aphididae) using linear and nonlinear models. Arbab A; Kontodimas DC; Sahragard A Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):591-603. PubMed ID: 17385529 [TBL] [Abstract][Full Text] [Related]
16. Modeling the evolution of insect phenology. Yurk BP; Powell JA Bull Math Biol; 2009 May; 71(4):952-79. PubMed ID: 19101769 [TBL] [Abstract][Full Text] [Related]
18. Antioxidative enzymes and the Russian wheat aphid (Diuraphis noxia) resistance response in wheat (Triticum aestivum). Moloi MJ; van der Westhuizen AJ Plant Biol (Stuttg); 2008 May; 10(3):403-7. PubMed ID: 18426488 [TBL] [Abstract][Full Text] [Related]
19. Modelling development of reptile embryos under fluctuating temperature regimes. Georges A; Beggs K; Young JE; Doody JS Physiol Biochem Zool; 2005; 78(1):18-30. PubMed ID: 15702459 [TBL] [Abstract][Full Text] [Related]
20. Dissimilar molecular defense responses are elicited in Triticum aestivum after infestation by different Diuraphis noxia biotypes. Zaayman D; Lapitan NL; Botha AM Physiol Plant; 2009 Jun; 136(2):209-22. PubMed ID: 19453509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]