BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19159657)

  • 61. Spinal cord injury-induced up-regulation of AHNAK, expressed in cells delineating cystic cavities, and associated with neoangiogenesis.
    von Boxberg Y; Salim C; Soares S; Baloui H; Alterio J; Ravaille-Veron M; Nothias F
    Eur J Neurosci; 2006 Aug; 24(4):1031-41. PubMed ID: 16930430
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G; Margaryan G; Mladinic M; Nistri A
    Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Advanced Age and Neurotrauma Diminish Glutathione and Impair Antioxidant Defense after Spinal Cord Injury.
    Stewart AN; Glaser EP; Mott CA; Bailey WM; Sullivan PG; Patel SP; Gensel JC
    J Neurotrauma; 2022 Aug; 39(15-16):1075-1089. PubMed ID: 35373589
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat.
    Obara T; Matsuura S; Narita S; Satoh S; Tsuchiya N; Habuchi T
    Urology; 2006 Oct; 68(4):892-7. PubMed ID: 17070388
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The dual role of tumor necrosis factor-alpha in the pathophysiology of spinal cord injury.
    Chi LY; Yu J; Zhu H; Li XG; Zhu SG; Kindy MS
    Neurosci Lett; 2008 Jun; 438(2):174-9. PubMed ID: 18468795
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microglia inhibition is a target of mild hypothermic treatment after the spinal cord injury.
    Morino T; Ogata T; Takeba J; Yamamoto H
    Spinal Cord; 2008 Jun; 46(6):425-31. PubMed ID: 18317490
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Immunomodulation of acute experimental spinal cord injury with human immunoglobulin G.
    Gok B; Sciubba DM; Okutan O; Beskonakli E; Palaoglu S; Erdamar H; Sargon MF
    J Clin Neurosci; 2009 Apr; 16(4):549-53. PubMed ID: 19200733
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Neuroprotective Effects of Milrinone on Experimental Acute Spinal Cord Injury: Rat Model.
    Arac D; Erdi MF; Keskin F; Kenan M; Cuce G; Aydemir FHY; Guney O; Kocaogullar Y
    World Neurosurg; 2021 Mar; 147():e225-e233. PubMed ID: 33316484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury.
    Genovese T; Mazzon E; Esposito E; Di Paola R; Murthy K; Neville L; Bramanti P; Cuzzocrea S
    Free Radic Res; 2009 Jul; 43(7):631-45. PubMed ID: 19418318
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats.
    Lo TP; Cho KS; Garg MS; Lynch MP; Marcillo AE; Koivisto DL; Stagg M; Abril RM; Patel S; Dietrich WD; Pearse DD
    J Comp Neurol; 2009 Jun; 514(5):433-48. PubMed ID: 19350644
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus.
    Kumar S; Misra UK; Kalita J; Khanna VK; Khan MY
    Neurochem Int; 2009 Dec; 55(7):648-54. PubMed ID: 19549548
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization and modeling of monocyte-derived macrophages after spinal cord injury.
    Longbrake EE; Lai W; Ankeny DP; Popovich PG
    J Neurochem; 2007 Aug; 102(4):1083-94. PubMed ID: 17663750
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of spinal cord injury on the rat estrous cycle.
    Hubscher CH; Armstrong JE; Johnson JR
    Brain Res; 2006 Jul; 1100(1):118-24. PubMed ID: 16774748
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of intravesical electrical stimulation on bladder function and synaptic neurotransmission in the rat spinal cord after spinal cord injury.
    Hong CH; Lee HY; Jin MH; Noh JY; Lee BH; Han SW
    BJU Int; 2009 Apr; 103(8):1136-41. PubMed ID: 19021629
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Olfactory bulb implantation and methylprednisolone administration in the treatment of spinal cord injury in rats.
    Carrillo-Ruiz JD; Andrade P; Silva F; Vargas G; Maciel-Navarro MM; Jiménez-Botello LC
    Neurosci Lett; 2009 Oct; 462(1):39-44. PubMed ID: 19560518
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of endogenous glutathione in the secondary damage in experimental spinal cord injury in mice.
    Genovese T; Mazzon E; Esposito E; Muià C; Di Paola R; Di Bella P; Bramanti P; Cuzzocrea S
    Neurosci Lett; 2007 Aug; 423(1):41-6. PubMed ID: 17669594
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spatial and temporal gene expression profiling of the contused rat spinal cord.
    Aimone JB; Leasure JL; Perreau VM; Thallmair M;
    Exp Neurol; 2004 Oct; 189(2):204-21. PubMed ID: 15380473
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury.
    Masunaga K; Yoshida M; Inadome A; Iwashita H; Miyamae K; Ueda S
    Int J Urol; 2006 Mar; 13(3):271-6. PubMed ID: 16643622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.