These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 19159779)
1. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Hua L; Han H; Zhang X Talanta; 2009 Mar; 77(5):1654-9. PubMed ID: 19159779 [TBL] [Abstract][Full Text] [Related]
2. Turn-on electrochemiluminescence sensing of Cd(2+) based on CdTe quantum dots. Song H; Yang M; Fan X; Wang H Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():130-3. PubMed ID: 24934970 [TBL] [Abstract][Full Text] [Related]
3. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Han H; Sheng Z; Liang J Anal Chim Acta; 2007 Jul; 596(1):73-8. PubMed ID: 17616242 [TBL] [Abstract][Full Text] [Related]
4. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Liu X; Jiang H; Lei J; Ju H Anal Chem; 2007 Nov; 79(21):8055-60. PubMed ID: 17910416 [TBL] [Abstract][Full Text] [Related]
5. An electrochemiluminescence sensor for determination of durabolin based on CdTe QD films by layer-by-layer self-assembly. Wan F; Yu J; Yang P; Ge S; Yan M Anal Bioanal Chem; 2011 May; 400(3):807-14. PubMed ID: 21365349 [TBL] [Abstract][Full Text] [Related]
6. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Sheng Z; Chen L Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrogenerated chemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) system by l-cysteine-capped CdTe quantum dots and its application for the determination of nitrofuran antibiotics. Taokaenchan N; Tangkuaram T; Pookmanee P; Phaisansuthichol S; Kuimalee S; Satienperakul S Biosens Bioelectron; 2015 Apr; 66():231-7. PubMed ID: 25437357 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Shan Y; Xu JJ; Chen HY Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752 [TBL] [Abstract][Full Text] [Related]
9. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Fu X; Tan X; Yuan R; Chen S Biosens Bioelectron; 2017 Apr; 90():61-68. PubMed ID: 27883960 [TBL] [Abstract][Full Text] [Related]
10. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. Hu FX; Wang J; Chen S; Rao Q Luminescence; 2019 Nov; 34(7):666-672. PubMed ID: 31243864 [TBL] [Abstract][Full Text] [Related]
11. Preparation of water-soluble CdSe quantum dots and its application for nitrite detection in the anodic electrochemiluminescence. Yao X; Yan P; Zhang K; Li J Luminescence; 2013; 28(4):551-6. PubMed ID: 23576268 [TBL] [Abstract][Full Text] [Related]
12. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
13. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons. Huan J; Liu Q; Fei A; Qian J; Dong X; Qiu B; Mao H; Wang K Biosens Bioelectron; 2015 Nov; 73():221-227. PubMed ID: 26086441 [TBL] [Abstract][Full Text] [Related]
14. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Wang J; Jiang X; Han H Biosens Bioelectron; 2016 Aug; 82():26-31. PubMed ID: 27031188 [TBL] [Abstract][Full Text] [Related]
15. Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Hu X; Wang R; Ding Y; Zhang X; Jin W Talanta; 2010 Mar; 80(5):1737-43. PubMed ID: 20152405 [TBL] [Abstract][Full Text] [Related]
16. Graphene-amplified electrogenerated chemiluminescence of CdTe quantum dots for H2O2 sensing. Wang Z; Song H; Zhao H; Lv Y Luminescence; 2013; 28(3):259-64. PubMed ID: 22555860 [TBL] [Abstract][Full Text] [Related]
17. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application. Ye Z; Liu Y; Pan M; Tao X; Chen Y; Ma P; Zhuo Y; Song D Biosens Bioelectron; 2023 May; 228():115219. PubMed ID: 36913885 [TBL] [Abstract][Full Text] [Related]
18. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Liu X; Ju H Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432 [TBL] [Abstract][Full Text] [Related]
19. Facile electrochemiluminescence sensing platform based on water-soluble tungsten oxide quantum dots for ultrasensitive detection of dopamine released by cells. Peng H; Liu P; Wu W; Chen W; Meng X; Lin X; Liu A Anal Chim Acta; 2019 Aug; 1065():21-28. PubMed ID: 31005147 [TBL] [Abstract][Full Text] [Related]
20. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid. Yang Y; Fang G; Wang X; Liu G; Wang S Biosens Bioelectron; 2016 Mar; 77():1134-43. PubMed ID: 26569444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]