These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 19159803)
1. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Xue X; Pan J; Xie H; Wang J; Zhang S Talanta; 2009 Mar; 77(5):1808-13. PubMed ID: 19159803 [TBL] [Abstract][Full Text] [Related]
2. A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels. Fu X; Huang K; Liu S J Microbiol Methods; 2009 Dec; 79(3):367-70. PubMed ID: 19799940 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates. Wang X; Du Y; Li Y; Li D; Sun R J Biomater Sci Polym Ed; 2011; 22(14):1881-93. PubMed ID: 20961493 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Yang L; Li Y Analyst; 2006 Mar; 131(3):394-401. PubMed ID: 16496048 [TBL] [Abstract][Full Text] [Related]
5. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe. Fu X; Huang K; Liu S Anal Bioanal Chem; 2010 Feb; 396(4):1397-404. PubMed ID: 20016878 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence sensing of nitric oxide in aqueous solution by triethanolamine-modified CdSe quantum dots. Yan XQ; Shang ZB; Zhang Z; Wang Y; Jin WJ Luminescence; 2009; 24(4):255-9. PubMed ID: 19294661 [TBL] [Abstract][Full Text] [Related]
7. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Shang ZB; Wang Y; Jin WJ Talanta; 2009 Apr; 78(2):364-9. PubMed ID: 19203596 [TBL] [Abstract][Full Text] [Related]
8. Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli. Carrillo-Carrión C; Simonet BM; Valcárcel M Biosens Bioelectron; 2011 Jul; 26(11):4368-74. PubMed ID: 21605965 [TBL] [Abstract][Full Text] [Related]
9. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Hahn MA; Keng PC; Krauss TD Anal Chem; 2008 Feb; 80(3):864-72. PubMed ID: 18186615 [TBL] [Abstract][Full Text] [Related]
10. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots. Liao P; Yan ZY; Xu ZJ; Sun X Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jun; 72(5):1066-70. PubMed ID: 19201257 [TBL] [Abstract][Full Text] [Related]
11. A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability. Zhou C; Shen H; Guo Y; Xu L; Niu J; Zhang Z; Du Z; Chen J; Li LS J Colloid Interface Sci; 2010 Apr; 344(2):279-85. PubMed ID: 20129617 [TBL] [Abstract][Full Text] [Related]
12. A highly efficient capillary electrophoresis-based method for size determination of water-soluble CdSe/ZnS core-shell quantum dots. Li YQ; Wang HQ; Wang JH; Guan LY; Liu BF; Zhao YD; Chen H Anal Chim Acta; 2009 Aug; 647(2):219-25. PubMed ID: 19591709 [TBL] [Abstract][Full Text] [Related]
13. Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates. Upadhyayula VK; Deng S; Mitchell MC; Smith GB; Nair VK; Ghoshroy S Water Sci Technol; 2008; 58(1):179-84. PubMed ID: 18653952 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin. Wang Y; Mo Y; Zhou L Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1311-5. PubMed ID: 21664175 [TBL] [Abstract][Full Text] [Related]
15. Light scattering sensing detection of pathogens based on the molecular recognition of immunoglobulin with cell wall-associated protein A. Liu ZD; Chen SF; Huang CZ; Zhen SJ; Liao QG Anal Chim Acta; 2007 Sep; 599(2):279-86. PubMed ID: 17870291 [TBL] [Abstract][Full Text] [Related]
16. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Su XL; Li Y Anal Chem; 2004 Aug; 76(16):4806-10. PubMed ID: 15307792 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. Zhao Y; Ye M; Chao Q; Jia N; Ge Y; Shen H J Agric Food Chem; 2009 Jan; 57(2):517-24. PubMed ID: 19154162 [TBL] [Abstract][Full Text] [Related]
18. Study on the interaction between CdSe quantum dots and chitosan by scattering spectra. Peng J; Liu S; Wang L; Liu Z; He Y J Colloid Interface Sci; 2009 Oct; 338(2):578-83. PubMed ID: 19631331 [TBL] [Abstract][Full Text] [Related]
19. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Shrivas K; Kailasa SK; Wu HF Proteomics; 2009 May; 9(10):2656-67. PubMed ID: 19391181 [TBL] [Abstract][Full Text] [Related]
20. [Detection of Salmonella, Shigella and Staphylococcus aureus based on quantum dots and immunomagnetic beads]. Li Q; Chen P; Wang J; Zhang S; Yan J Wei Sheng Yan Jiu; 2013 Jul; 42(4):660-3. PubMed ID: 24024384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]