These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19159811)

  • 1. Thermo-reversibility of the fluorescence enhancement of acridine orange induced by supramolecular self-assembly.
    Wang H; Zhang W; Dong X; Yang Y
    Talanta; 2009 Mar; 77(5):1864-8. PubMed ID: 19159811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host-guest interactions of 5-fluorouracil in supramolecular organogels.
    Wang H; Zhang J; Zhang W; Yang Y
    Eur J Pharm Biopharm; 2009 Nov; 73(3):357-60. PubMed ID: 19615443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of supramolecular hydrogels in the presence of L-phenylalanine derivative as a hydrogelator.
    Fu X; Wang N; Zhang S; Wang H; Yang Y
    J Colloid Interface Sci; 2007 Nov; 315(1):376-81. PubMed ID: 17673224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence enhancement of europium(III) originating from self-assembled supramolecular hydrogels.
    Wang H; Li X; Fang F; Yang Y
    Dalton Trans; 2010 Aug; 39(31):7294-300. PubMed ID: 20589307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence relaxation dynamics of acridine orange in nanosized micellar systems and DNA.
    Shaw AK; Pal SK
    J Phys Chem B; 2007 Apr; 111(16):4189-99. PubMed ID: 17394304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system.
    Wang F; Yang J; Wu X; Wang X; Feng L; Jia Z; Guo C
    J Colloid Interface Sci; 2006 Jun; 298(2):757-64. PubMed ID: 16458913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin.
    Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF
    Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of acridine orange dye at a mica/solution interface: formation of nanostripe supramolecular architectures.
    Yao H; Kobayashi S; Kimura K
    J Colloid Interface Sci; 2007 Mar; 307(1):272-9. PubMed ID: 17161419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelation of microemulsions and release behavior of sodium salicylate from gelled microemulsions.
    Feng G; Xiong Y; Wang H; Yang Y
    Eur J Pharm Biopharm; 2009 Feb; 71(2):297-302. PubMed ID: 18793724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and dissociation of the acridine orange dimer as a tool for studying polyelectrolyte-surfactant interactions.
    Mondek J; Mravec F; Halasová T; Hnyluchová Z; Pekař M
    Langmuir; 2014 Jul; 30(29):8726-34. PubMed ID: 25001412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model.
    Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK
    J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracorporeal photodynamic image detection of mouse osteosarcoma in soft tissues utilizing fluorovisualization effect of acridine orange.
    Satonaka H; Kusuzaki K; Matsubara T; Shintani K; Wakabayashi T; Matsumine A; Uchida A
    Oncology; 2006; 70(6):465-73. PubMed ID: 17237622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.
    Ikeda M; Nobori T; Schmutz M; Lehn JM
    Chemistry; 2005 Jan; 11(2):662-8. PubMed ID: 15565726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SYBR Green I-induced fluorescence in cultured immune cells: a comparison with Acridine Orange.
    Briggs C; Jones M
    Acta Histochem; 2005; 107(4):301-12. PubMed ID: 16139877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Library of Multipurpose Supramolecular Supergelators: Fabrication of Structured Silica, Porous Plastics, and Fluorescent Gels.
    Krishnan BP; Sureshan KM
    Chem Asian J; 2018 Jan; 13(2):187-193. PubMed ID: 29195010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excimer Emission of Acridine Orange Adsorbed on Gadolinium-Yttrium Orthovanadate Nanoparticles.
    Hubenko KO; Yefimova SL; Tkacheva TN; Maksimchuk PO; Sedyh OO; Viagin OG; Sorokin AV; Malyukin YV
    J Fluoresc; 2018 Jul; 28(4):943-949. PubMed ID: 29961203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR characterization of the formation kinetics and structure of di-O-benzylidene sorbitol gels self-assembled in organic solvents.
    VanderHart DL; Douglas JF; Hudson SD; Antonucci JM; Wilder EA
    Langmuir; 2011 Mar; 27(5):1745-57. PubMed ID: 21247189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular gels formed from multi-component low molecular weight species.
    Buerkle LE; Rowan SJ
    Chem Soc Rev; 2012 Sep; 41(18):6089-102. PubMed ID: 22677951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible self-assembly of entrapped fluorescent gelators in polymerized styrene gel matrix: erasable thermal imaging via recreation of supramolecular architectures.
    Srinivasan S; Babu PA; Mahesh S; Ajayaghosh A
    J Am Chem Soc; 2009 Oct; 131(42):15122-3. PubMed ID: 19795860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers.
    Escuder B; LLusar M; Miravet JF
    J Org Chem; 2006 Sep; 71(20):7747-52. PubMed ID: 16995682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.