BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19160394)

  • 1. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting peptide retention times for proteomics.
    Krokhin OV; Spicer V
    Curr Protoc Bioinformatics; 2010 Sep; Chapter 13():Unit 13.14. PubMed ID: 20836075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Informatics for peptide retention properties in proteomic LC-MS.
    Shinoda K; Sugimoto M; Tomita M; Ishihama Y
    Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments.
    Shinoda K; Tomita M; Ishihama Y
    Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches.
    Žuvela P; Macur K; Jay Liu J; Bączek T
    J Pharm Biomed Anal; 2016 Aug; 127():94-100. PubMed ID: 26856456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining intrinsic hydrophobicity of amino acids' side chains in random coil conformation. Reversed-phase liquid chromatography of designed synthetic peptides vs. random peptide data sets.
    Shamshurin D; Spicer V; Krokhin OV
    J Chromatogr A; 2011 Sep; 1218(37):6348-55. PubMed ID: 21798546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of peptide retention at different HPLC conditions from multiple linear regression models.
    Baczek T; Wiczling P; Marszałł M; Heyden YV; Kaliszan R
    J Proteome Res; 2005; 4(2):555-63. PubMed ID: 15822934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention Time Prediction and Protein Identification.
    Henneman A; Palmblad M
    Methods Mol Biol; 2020; 2051():115-132. PubMed ID: 31552626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.
    Krokhin OV; Spicer V
    Proteomics; 2016 Dec; 16(23):2931-2936. PubMed ID: 27701844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic data mining using predicted peptide chromatographic retention times.
    Tripet B; Renuka Jayadev M; Blow D; Nguyen C; Hodges R; Cios K
    Int J Bioinform Res Appl; 2007; 3(4):431-45. PubMed ID: 18048310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction.
    Gorshkov AV; Tarasova IA; Evreinov VV; Savitski MM; Nielsen ML; Zubarev RA; Gorshkov MV
    Anal Chem; 2006 Nov; 78(22):7770-7. PubMed ID: 17105170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of peptide retention time in proteome research].
    Shao C; Gao Y
    Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides.
    Bodzioch K; Baczek T; Kaliszan R; Vander Heyden Y
    J Pharm Biomed Anal; 2009 Nov; 50(4):563-9. PubMed ID: 18929455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prediction of peptide retention time in reversed-phase liquid chromatography and its application in protein identification].
    Liu C; Wang H; Fu Y; Yuan Z; Chi H; Wang L; Sun R; He S
    Se Pu; 2010 Jun; 28(6):529-34. PubMed ID: 20873570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitation of predictive 2-D liquid chromatography in reducing the database search space in shotgun proteomics: in silico studies.
    Moskovets E; Goloborodko AA; Gorshkov AV; Gorshkov MV
    J Sep Sci; 2012 Jul; 35(14):1771-8. PubMed ID: 22807359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location.
    Tripet B; Cepeniene D; Kovacs JM; Mant CT; Krokhin OV; Hodges RS
    J Chromatogr A; 2007 Feb; 1141(2):212-25. PubMed ID: 17187811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides.
    Krokhin OV; Spicer V
    Anal Chem; 2009 Nov; 81(22):9522-30. PubMed ID: 19848410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics.
    Maboudi Afkham H; Qiu X; The M; Käll L
    Bioinformatics; 2017 Feb; 33(4):508-513. PubMed ID: 27797755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.