These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19160459)

  • 1. Nonenzymatic biotinylation of histone H2A.
    Healy S; Heightman TD; Hohmann L; Schriemer D; Gravel RA
    Protein Sci; 2009 Feb; 18(2):314-28. PubMed ID: 19160459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment.
    Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA
    Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3.
    Kobza K; Sarath G; Zempleni J
    BMB Rep; 2008 Apr; 41(4):310-5. PubMed ID: 18452652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase.
    Chew YC; Camporeale G; Kothapalli N; Sarath G; Zempleni J
    J Nutr Biochem; 2006 Apr; 17(4):225-33. PubMed ID: 16109483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18.
    Bao B; Pestinger V; Hassan YI; Borgstahl GE; Kolar C; Zempleni J
    J Nutr Biochem; 2011 May; 22(5):470-5. PubMed ID: 20688500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved regulatory mechanism in bifunctional biotin protein ligases.
    Wang J; Beckett D
    Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant.
    Xu Y; Beckett D
    Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into BirA from Haemophilus influenzae, a bifunctional protein as a biotin protein ligase and a transcriptional repressor.
    Jeong KH; Son SB; Ko JH; Lee M; Lee JY
    Biochem Biophys Res Commun; 2024 Nov; 733():150601. PubMed ID: 39213703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase.
    Hassan YI; Zempleni J
    Nutr Rev; 2008 Dec; 66(12):721-5. PubMed ID: 19019041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase.
    Cronan JE
    J Nutr Biochem; 2005 Jul; 16(7):416-8. PubMed ID: 15992681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate recognition characteristics of human holocarboxylase synthetase for biotin ligation.
    Lee CK; Cheong C; Jeon YH
    Biochem Biophys Res Commun; 2010 Jan; 391(1):455-60. PubMed ID: 19914215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases.
    Camporeale G; Zempleni J; Eissenberg JC
    J Nutr; 2007 Apr; 137(4):885-9. PubMed ID: 17374649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression in Escherichia coli of N- and C-terminally deleted human holocarboxylase synthetase. Influence of the N-terminus on biotinylation and identification of a minimum functional protein.
    Campeau E; Gravel RA
    J Biol Chem; 2001 Apr; 276(15):12310-6. PubMed ID: 11124959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.
    León-Del-Río A; Valadez-Graham V; Gravel RA
    Annu Rev Nutr; 2017 Aug; 37():207-223. PubMed ID: 28564555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity in post-translational biotin addition to five human carboxylases.
    Ingaramo M; Beckett D
    J Biol Chem; 2012 Jan; 287(3):1813-22. PubMed ID: 22123817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events.
    Li Y; Hassan YI; Moriyama H; Zempleni J
    J Nutr Biochem; 2013 Aug; 24(8):1446-52. PubMed ID: 23337344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of biotin responsiveness in biotin-responsive multiple carboxylase deficiency.
    Dupuis L; Campeau E; Leclerc D; Gravel RA
    Mol Genet Metab; 1999 Feb; 66(2):80-90. PubMed ID: 10068510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation.
    Beckett D; Kovaleva E; Schatz PJ
    Protein Sci; 1999 Apr; 8(4):921-9. PubMed ID: 10211839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetics of biotin metabolism: old vitamin, new science.
    Gravel RA; Narang MA
    J Nutr Biochem; 2005 Jul; 16(7):428-31. PubMed ID: 15992684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation.
    Hassan YI; Moriyama H; Zempleni J
    Arch Biochem Biophys; 2010 Mar; 495(1):35-41. PubMed ID: 20026029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.