BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 19160505)

  • 1. The acute light-induction of sleep is mediated by OPN4-based photoreception.
    Lupi D; Oster H; Thompson S; Foster RG
    Nat Neurosci; 2008 Sep; 11(9):1068-73. PubMed ID: 19160505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium.
    Peirson SN; Bovee-Geurts PH; Lupi D; Jeffery G; DeGrip WJ; Foster RG
    Brain Res Mol Brain Res; 2004 Apr; 123(1-2):132-5. PubMed ID: 15046875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanopsin is required for non-image-forming photic responses in blind mice.
    Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB
    Science; 2003 Jul; 301(5632):525-7. PubMed ID: 12829787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.
    Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA
    Science; 2002 Dec; 298(5601):2213-6. PubMed ID: 12481141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of melanopsin in circadian responses to light.
    Ruby NF; Brennan TJ; Xie X; Cao V; Franken P; Heller HC; O'Hara BF
    Science; 2002 Dec; 298(5601):2211-3. PubMed ID: 12481140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice.
    Tsai JW; Hannibal J; Hagiwara G; Colas D; Ruppert E; Ruby NF; Heller HC; Franken P; Bourgin P
    PLoS Biol; 2009 Jun; 7(6):e1000125. PubMed ID: 19513122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analysis and functional genomics identify novel components of melanopsin signaling.
    Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG
    Curr Biol; 2007 Aug; 17(16):1363-72. PubMed ID: 17702581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.
    Pilorz V; Tam SK; Hughes S; Pothecary CA; Jagannath A; Hankins MW; Bannerman DM; Lightman SL; Vyazovskiy VV; Nolan PM; Foster RG; Peirson SN
    PLoS Biol; 2016 Jun; 14(6):e1002482. PubMed ID: 27276063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses.
    Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1268-75. PubMed ID: 17325172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration.
    Boudard DL; Mendoza J; Hicks D
    Eur J Neurosci; 2009 Oct; 30(8):1527-36. PubMed ID: 19821841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence.
    Morin LP; Studholme KM
    Neuroscience; 2011 Dec; 199():213-24. PubMed ID: 21985934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanopsin regulates visual processing in the mouse retina.
    Barnard AR; Hattar S; Hankins MW; Lucas RJ
    Curr Biol; 2006 Feb; 16(4):389-95. PubMed ID: 16488873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonvisual ocular photoreception in the mammal.
    Van Gelder RN
    Methods Enzymol; 2005; 393():746-55. PubMed ID: 15817322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells.
    Moldrup ML; Georg B; Falktoft B; Mortensen R; Hansen JL; Fahrenkrug J
    J Neurochem; 2010 Feb; 112(3):797-806. PubMed ID: 19943848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells.
    Tu DC; Zhang D; Demas J; Slutsky EB; Provencio I; Holy TE; Van Gelder RN
    Neuron; 2005 Dec; 48(6):987-99. PubMed ID: 16364902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A broad role for melanopsin in nonvisual photoreception.
    Gooley JJ; Lu J; Fischer D; Saper CB
    J Neurosci; 2003 Aug; 23(18):7093-106. PubMed ID: 12904470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
    Altimus CM; Güler AD; Villa KL; McNeill DS; Legates TA; Hattar S
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19998-20003. PubMed ID: 19060203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4-/-) mice: a developmental study.
    Lupi D; Sekaran S; Jones SL; Hankins MW; Foster RG
    Chronobiol Int; 2006; 23(1-2):167-79. PubMed ID: 16687291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.