BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19160659)

  • 1. Lipidomic analysis of phospholipids and related structures by liquid chromatography-mass spectrometry.
    Pettitt TR
    Methods Mol Biol; 2009; 462():25-41. PubMed ID: 19160659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipidomic analysis of signaling pathways.
    Wakelam MJ; Pettitt TR; Postle AD
    Methods Enzymol; 2007; 432():233-46. PubMed ID: 17954220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of chromatographic methods for the assessment of phospholipids in biological samples.
    Peterson BL; Cummings BS
    Biomed Chromatogr; 2006 Mar; 20(3):227-43. PubMed ID: 16138296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoinositide analysis by liquid chromatography-mass spectrometry.
    Pettitt TR
    Methods Mol Biol; 2010; 645():203-17. PubMed ID: 20645190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry.
    Sato Y; Nakamura T; Aoshima K; Oda Y
    Anal Chem; 2010 Dec; 82(23):9858-64. PubMed ID: 21062019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography.
    White T; Bursten S; Federighi D; Lewis RA; Nudelman E
    Anal Biochem; 1998 Apr; 258(1):109-17. PubMed ID: 9527856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments in single-drop microextraction.
    Xu L; Basheer C; Lee HK
    J Chromatogr A; 2007 Jun; 1152(1-2):184-92. PubMed ID: 17097670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry.
    Lísa M; Cífková E; Holčapek M
    J Chromatogr A; 2011 Aug; 1218(31):5146-56. PubMed ID: 21705004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.
    Farwanah H; Wirtz J; Kolter T; Raith K; Neubert RH; Sandhoff K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):2976-82. PubMed ID: 19646933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues.
    Nygren H; Seppänen-Laakso T; Castillo S; Hyötyläinen T; Orešič M
    Methods Mol Biol; 2011; 708():247-57. PubMed ID: 21207295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of ion pairing reagents for sensitive detection and separation of phospholipids in the positive ion mode LC-ESI-MS.
    Dodbiba E; Xu C; Payagala T; Wanigasekara E; Moon MH; Armstrong DW
    Analyst; 2011 Apr; 136(8):1586-93. PubMed ID: 21336348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy.
    Pang LQ; Liang QL; Wang YM; Ping L; Luo GA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jun; 869(1-2):118-25. PubMed ID: 18524699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile acid analysis in various biological samples using ultra performance liquid chromatography/electrospray ionization-mass spectrometry (UPLC/ESI-MS).
    Hagio M; Matsumoto M; Ishizuka S
    Methods Mol Biol; 2011; 708():119-29. PubMed ID: 21207286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography.
    Lesnefsky EJ; Stoll MS; Minkler PE; Hoppel CL
    Anal Biochem; 2000 Oct; 285(2):246-54. PubMed ID: 11017709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods.
    Zhao YY; Xiong Y; Curtis JM
    J Chromatogr A; 2011 Aug; 1218(32):5470-9. PubMed ID: 21737084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and universal method for the separation and identification of phospholipid molecular species.
    Retra K; Bleijerveld OB; van Gestel RA; Tielens AG; van Hellemond JJ; Brouwers JF
    Rapid Commun Mass Spectrom; 2008 Jun; 22(12):1853-62. PubMed ID: 18470873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction.
    Forrester JS; Milne SB; Ivanova PT; Brown HA
    Mol Pharmacol; 2004 Apr; 65(4):813-21. PubMed ID: 15044609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of phospholipids by high performance liquid chromatography.
    Ahmed HA
    Methods Mol Biol; 1993; 19():169-77. PubMed ID: 8220695
    [No Abstract]   [Full Text] [Related]  

  • 19. Use of lipidomics for analyzing glycerolipid and cholesteryl ester oxidation by gas chromatography, HPLC, and on-line MS.
    Kuksis A; Suomela JP; Tarvainen M; Kallio H
    Methods Mol Biol; 2009; 580():39-91. PubMed ID: 19784594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics.
    Rainville PD; Stumpf CL; Shockcor JP; Plumb RS; Nicholson JK
    J Proteome Res; 2007 Feb; 6(2):552-8. PubMed ID: 17269712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.