These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19161197)

  • 61. Magnetic resonance imaging of short T2 components in tissue.
    Gatehouse PD; Bydder GM
    Clin Radiol; 2003 Jan; 58(1):1-19. PubMed ID: 12565203
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.
    Henning A; Fuchs A; Murdoch JB; Boesiger P
    NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Noncontrast-enhanced three-dimensional magnetic resonance aortography of the thorax at 3.0 T using respiratory-compensated T1-weighted k-space segmented gradient-echo imaging with radial data sampling: preliminary study.
    Amano Y; Takahama K; Kumita S
    Invest Radiol; 2009 Sep; 44(9):548-52. PubMed ID: 19652612
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid single scan ramped hybrid-encoding for bicomponent T2* mapping in a human knee joint: A feasibility study.
    Jang H; McMillan AB; Ma Y; Jerban S; Chang EY; Du J; Kijowski R
    NMR Biomed; 2020 Nov; 33(11):e4391. PubMed ID: 32761692
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrashort TE chemical shift imaging (UTE-CSI).
    Robson MD; Tyler DJ; Neubauer S
    Magn Reson Med; 2005 Feb; 53(2):267-74. PubMed ID: 15678544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantitative ultrashort TE imaging of the short-T
    C A Araujo E; Azzabou N; Vignaud A; Guillot G; Carlier PG
    Magn Reson Med; 2017 Sep; 78(3):997-1008. PubMed ID: 27699843
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging.
    Deoni SC
    J Magn Reson Imaging; 2009 Aug; 30(2):411-7. PubMed ID: 19629970
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quasi-steady-state displacement response of whole human cadaveric knees in a MRI scanner.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2009 Aug; 131(8):081004. PubMed ID: 19604016
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Short-echo spectroscopic imaging combined with lactate editing in a single scan.
    Melkus G; Mörchel P; Behr VC; Kotas M; Flentje M; Jakob PM
    NMR Biomed; 2008 Nov; 21(10):1076-86. PubMed ID: 18613250
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tissue-Specific T
    Breda SJ; Poot DHJ; Papp D; de Vries BA; Kotek G; Krestin GP; Hernández-Tamames JA; de Vos RJ; Oei EHG
    J Magn Reson Imaging; 2020 Aug; 52(2):420-430. PubMed ID: 32108398
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Relaxation time mapping of short T*2 nuclei with single-point imaging (SPI) methods.
    Beyea SD; Balcom BJ; Prado PJ; Cross AR; Kennedy CB; Armstrong RL; Bremner TW
    J Magn Reson; 1998 Nov; 135(1):156-64. PubMed ID: 9799689
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultra-short echo time spectroscopic imaging in rats: implications for monitoring lipids in glioma gene therapy.
    Liimatainen T; Hakumäki J; Tkác I; Gröhn O
    NMR Biomed; 2006 Aug; 19(5):554-9. PubMed ID: 16523527
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-resolution Fourier-encoded sub-millisecond echo time musculoskeletal imaging at 3 Tesla and 7 Tesla.
    Deligianni X; Bär P; Scheffler K; Trattnig S; Bieri O
    Magn Reson Med; 2013 Nov; 70(5):1434-9. PubMed ID: 23233430
    [TBL] [Abstract][Full Text] [Related]  

  • 74. T2 relaxometry of human median nerve.
    Gambarota G
    Semin Musculoskelet Radiol; 2009 Mar; 13(1):24-8. PubMed ID: 19235669
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study.
    Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S
    Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interleaved T(1) and T(2) relaxation time mapping for cardiac applications.
    Blume U; Lockie T; Stehning C; Sinclair S; Uribe S; Razavi R; Schaeffter T
    J Magn Reson Imaging; 2009 Feb; 29(2):480-7. PubMed ID: 19161206
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications.
    Ma Y; Jang H; Jerban S; Chang EY; Chung CB; Bydder GM; Du J
    Appl Phys Rev; 2022 Dec; 9(4):041303. PubMed ID: 36467869
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Assessment of left ventricular function parameters with a new three-dimensional shape model.
    Bansmann PM; Sénégas J; Muellerleile K; Lund G; Kemper J; Adam G; Stork A
    Rofo; 2009 Feb; 181(2):161-8. PubMed ID: 19173155
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence.
    Notohamiprodjo M; Horng A; Pietschmann MF; Müller PE; Horger W; Park J; Crispin A; del Olmo JR; Weckbach S; Herrmann KA; Reiser MF; Glaser C
    Invest Radiol; 2009 Sep; 44(9):585-97. PubMed ID: 19668001
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental results with a whole body NMR-CT scanner using a resistive magnet.
    Inouye T; Satoh K; Kose K; Suzuki H; Sato M; Yasuoka H
    Radiat Med; 1983; 1(1):8-16. PubMed ID: 6679899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.