These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19161201)

  • 1. Evaluation of the translational and rotational forces acting on a highly ferromagnetic orthopedic spinal implant in magnetic resonance imaging.
    McComb C; Allan D; Condon B
    J Magn Reson Imaging; 2009 Feb; 29(2):449-53. PubMed ID: 19161201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Orthodontic brackets in high field MR imaging: experimental evaluation of magnetic field interactions at 3.0 Tesla].
    Kemper J; Klocke A; Kahl-Nieke B; Adam G
    Rofo; 2005 Dec; 177(12):1691-8. PubMed ID: 16333793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents and iliac artery stents with a 3.0 Tesla MR system].
    Sommer T; Maintz D; Schmiedel A; Hackenbroch M; Hofer U; Urbach H; Pavlidis C; Träber F; Schild H; Höher M
    Rofo; 2004 May; 176(5):731-8. PubMed ID: 15122473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system.
    Shellock FG
    J Magn Reson Imaging; 2002 Dec; 16(6):721-32. PubMed ID: 12451586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational and rotational forces on heart valve prostheses subjected ex vivo to a 4.7-T MR system.
    Edwards MB; Ordidge RJ; Thomas DL; Hand JW; Taylor KM
    J Magn Reson Imaging; 2002 Dec; 16(6):653-9. PubMed ID: 12451578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System.
    Dyer RK; Nakmali D; Dormer KJ
    Laryngoscope; 2006 Aug; 116(8):1321-33. PubMed ID: 16885731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of magnetic field (4.7 T) induced forces on prosthetic heart valves and annuloplasty rings.
    Edwards MB; Ordidge RJ; Hand JW; Taylor KM; Young IR
    J Magn Reson Imaging; 2005 Aug; 22(2):311-7. PubMed ID: 16028239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla.
    Klocke A; Kemper J; Schulze D; Adam G; Kahl-Nieke B
    J Orofac Orthop; 2005 Jul; 66(4):279-87. PubMed ID: 16044226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurostimulation systems: assessment of magnetic field interactions associated with 1.5- and 3-Tesla MR systems.
    Baker KB; Nyenhuis JA; Hrdlicka G; Rezai AR; Tkach JA; Shellock FG
    J Magn Reson Imaging; 2005 Jan; 21(1):72-7. PubMed ID: 15611943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR imaging of metallic implants and materials: a compilation of the literature.
    Shellock FG
    AJR Am J Roentgenol; 1988 Oct; 151(4):811-4. PubMed ID: 3048071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-field-strength MR imaging and metallic biomedical implants: an ex vivo evaluation of deflection forces.
    Shellock FG; Crues JV
    AJR Am J Roentgenol; 1988 Aug; 151(2):389-92. PubMed ID: 3260731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety of orthopedic implants in magnetic resonance imaging: an experimental verification.
    Kumar R; Lerski RA; Gandy S; Clift BA; Abboud RJ
    J Orthop Res; 2006 Sep; 24(9):1799-802. PubMed ID: 16838376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for measuring the torque on implantable cardiovascular devices in MR static fields.
    D'Avenio G; Canese R; Podo F; Grigioni M
    J Magn Reson Imaging; 2007 Nov; 26(5):1368-74. PubMed ID: 17969137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the static magnetic field interactions for a newly developed magnetic ophthalmic implant at 3 Tesla MRI.
    Bodenstein AK; Lüpke M; Seiler C; Goblet F; Nikolic S; Hinze U; Chichkov B; Windhövel C; Bach JP; Harder L; Seifert H
    Rofo; 2019 Mar; 191(3):209-215. PubMed ID: 30308689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Apparatus for Digital Measurement of Magnetically Induced Torque on Medical Implants to Facilitate the Application of the ASTM F2213 Standard.
    Heinrich A; Dorschel J; Mohammad Mashoor M; Guttler F; Teichgraber U
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3420-3425. PubMed ID: 30892195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load fatigue performance of implant-ceramic abutment combinations.
    Nguyen HQ; Tan KB; Nicholls JI
    Int J Oral Maxillofac Implants; 2009; 24(4):636-46. PubMed ID: 19885403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper T 380A IUD and magnetic resonance imaging.
    Zieman M; Kanal E
    Contraception; 2007 Feb; 75(2):93-5. PubMed ID: 17241836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging of stapes prostheses.
    Syms AJ; Petermann GW
    Am J Otol; 2000 Jul; 21(4):494-8. PubMed ID: 10912693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eddy-current induction in extended metallic parts as a source of considerable torsional moment.
    Graf H; Lauer UA; Schick F
    J Magn Reson Imaging; 2006 Apr; 23(4):585-90. PubMed ID: 16534754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study.
    Tabassum A; Meijer GJ; Wolke JG; Jansen JA
    Clin Oral Implants Res; 2009 Apr; 20(4):327-32. PubMed ID: 19298286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.