BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19161375)

  • 21. Lamellar body exocytosis by cell stretch or purinergic stimulation: possible physiological roles, messengers and mechanisms.
    Dietl P; Liss B; Felder E; Miklavc P; Wirtz H
    Cell Physiol Biochem; 2010; 25(1):1-12. PubMed ID: 20054140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. F-actin scaffold stabilizes lamellar bodies during surfactant secretion.
    Islam MN; Gusarova GA; Monma E; Das SR; Bhattacharya J
    Am J Physiol Lung Cell Mol Physiol; 2014 Jan; 306(1):L50-7. PubMed ID: 24213916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers.
    Singer W; Frick M; Haller T; Bernet S; Ritsch-Marte M; Dietl P
    Biophys J; 2003 Feb; 84(2 Pt 1):1344-51. PubMed ID: 12547815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance.
    Valentijn K; Valentijn JA; Jamieson JD
    Biochem Biophys Res Commun; 1999 Dec; 266(3):652-61. PubMed ID: 10603303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells.
    Foissner I; Lichtscheidl IK; Wasteneys GO
    Cell Motil Cytoskeleton; 1996; 35(1):35-48. PubMed ID: 8874964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion.
    Hibbert JE; Butt RH; Coorssen JR
    Int J Biochem Cell Biol; 2006 Mar; 38(3):461-71. PubMed ID: 16309945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells.
    van Weeren L; de Graaff AM; Jamieson JD; Batenburg JJ; Valentijn JA
    Am J Respir Cell Mol Biol; 2004 Mar; 30(3):288-95. PubMed ID: 12933357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exocytosis of lung surfactant: from the secretory vesicle to the air-liquid interface.
    Dietl P; Haller T
    Annu Rev Physiol; 2005; 67():595-621. PubMed ID: 15709972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compound exocytosis in pituitary cells.
    Vardjan N; Jorgacevski J; Stenovec M; Kreft M; Zorec R
    Ann N Y Acad Sci; 2009 Jan; 1152():63-75. PubMed ID: 19161377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium-regulated exocytosis in neuroendocrine cells: intersectin-1L stimulates actin polymerization and exocytosis by activating Cdc42.
    Momboisse F; Ory S; Calco V; Malacombe M; Bader MF; Gasman S
    Ann N Y Acad Sci; 2009 Jan; 1152():209-14. PubMed ID: 19161392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging Ca2+-triggered exocytosis of single secretory granules on plasma membrane lawns from neuroendocrine cells.
    Lang T
    Methods Mol Biol; 2008; 440():51-9. PubMed ID: 18369936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of surfactant release in alveolar type II cells.
    Haller T; Ortmayr J; Friedrich F; Völkl H; Dietl P
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1579-84. PubMed ID: 9465058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes.
    Paco S; Margelí MA; Olkkonen VM; Imai A; Blasi J; Fischer-Colbrie R; Aguado F
    J Neurochem; 2009 Jul; 110(1):143-56. PubMed ID: 19594665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells.
    Hanna ST; Pigeau GM; Galvanovskis J; Clark A; Rorsman P; MacDonald PE
    Pflugers Arch; 2009 Apr; 457(6):1343-50. PubMed ID: 18795319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dense-core granules in neuroendocrine cells and neurons release their secretory constituents by piecemeal degranulation (review).
    Crivellato E; Nico B; Bertelli E; Nussdorfer GG; Ribatti D
    Int J Mol Med; 2006 Dec; 18(6):1037-46. PubMed ID: 17089006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pattern of rise in subplasma membrane Ca2+ concentration determines type of fusing insulin granules in pancreatic beta cells.
    Ohara-Imaizumi M; Aoyagi K; Nakamichi Y; Nishiwaki C; Sakurai T; Nagamatsu S
    Biochem Biophys Res Commun; 2009 Jul; 385(3):291-5. PubMed ID: 19426714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging exocytosis of single insulin secretory granules with TIRF microscopy.
    Nagamatsu S; Ohara-Imaizumi M
    Methods Mol Biol; 2008; 440():259-68. PubMed ID: 18369952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secretion without membrane fusion: porocytosis.
    Silver RB; Pappas GD
    Anat Rec B New Anat; 2005 Jan; 282(1):18-37. PubMed ID: 15672353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of cargo release from dense core granules by size and actin network.
    Felmy F
    Traffic; 2007 Aug; 8(8):983-97. PubMed ID: 17506863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.