BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19161385)

  • 1. SNAP-25 and gene-targeted mouse mutants.
    Bark C
    Ann N Y Acad Sci; 2009 Jan; 1152():145-53. PubMed ID: 19161385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of SNAP-25 family proteins in the mouse brain.
    Yamamori S; Itakura M; Sugaya D; Katsumata O; Sakagami H; Takahashi M
    J Comp Neurol; 2011 Apr; 519(5):916-32. PubMed ID: 21280044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) differently regulate activation and inactivation gating of Kv2.2 and Kv2.1: Implications on pancreatic islet cell Kv channels.
    Wolf-Goldberg T; Michaelevski I; Sheu L; Gaisano HY; Chikvashvili D; Lotan I
    Mol Pharmacol; 2006 Sep; 70(3):818-28. PubMed ID: 16754785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promiscuous interaction of SNAP-25 with all plasma membrane syntaxins in a neuroendocrine cell.
    Bajohrs M; Darios F; Peak-Chew SY; Davletov B
    Biochem J; 2005 Dec; 392(Pt 2):283-9. PubMed ID: 15975093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNAP-25a and SNAP-25b differently mediate interactions with Munc18-1 and Gβγ subunits.
    Daraio T; Valladolid-Acebes I; Brismar K; Bark C
    Neurosci Lett; 2018 May; 674():75-80. PubMed ID: 29548989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous expression of SNARE proteins SNAP-23, SNAP-25, Syntaxin1 and VAMP in human parathyroid tissue.
    Lu M; Forsberg L; Höög A; Juhlin CC; Vukojević V; Larsson C; Conigrave AD; Delbridge LW; Gill A; Bark C; Farnebo LO; Bränström R
    Mol Cell Endocrinol; 2008 Jun; 287(1-2):72-80. PubMed ID: 18457912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunohistochemical method that distinguishes free from complexed SNAP-25.
    Xiao J; Xia Z; Pradhan A; Zhou Q; Liu Y
    J Neurosci Res; 2004 Jan; 75(1):143-51. PubMed ID: 14689457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain.
    Nagy G; Milosevic I; Fasshauer D; Müller EM; de Groot BL; Lang T; Wilson MC; Sørensen JB
    Mol Biol Cell; 2005 Dec; 16(12):5675-85. PubMed ID: 16195346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion.
    Pobbati AV; Stein A; Fasshauer D
    Science; 2006 Aug; 313(5787):673-6. PubMed ID: 16888141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNAP-25: a novel candidate gene in psychiatric genetics.
    Kovács-Nagy R; Hu J; Rónai Z; Sasvári-Székely M
    Neuropsychopharmacol Hung; 2009 Jun; 11(2):89-94. PubMed ID: 19827316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain.
    Kolk SM; Groffen AJ; Tuinhof R; Ouwens DT; Cools AR; Jenks BG; Verhage M; Roubos EW
    Neuroscience; 2004; 128(3):531-43. PubMed ID: 15381282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery.
    Fournier KM; Robinson MB
    Neurochem Int; 2006; 48(6-7):596-603. PubMed ID: 16516346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.
    de Wit H; Walter AM; Milosevic I; Gulyás-Kovács A; Riedel D; Sørensen JB; Verhage M
    Cell; 2009 Sep; 138(5):935-46. PubMed ID: 19716167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing SNAP-25b with SNAP-25a expression results in metabolic disease.
    Valladolid-Acebes I; Daraio T; Brismar K; Harkany T; Ögren SO; Hökfelt TG; Bark C
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4326-35. PubMed ID: 26195742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose/oxygen deprivation and reperfusion upregulate SNAREs and complexin in organotypic hippocampal slice cultures.
    Park SJ; Jung YJ; Kim YA; Lee-Kang JH; Lee KE
    Neuropathology; 2008 Dec; 28(6):612-20. PubMed ID: 18503508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23.
    Sørensen JB; Nagy G; Varoqueaux F; Nehring RB; Brose N; Wilson MC; Neher E
    Cell; 2003 Jul; 114(1):75-86. PubMed ID: 12859899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells.
    Sander LE; Frank SP; Bolat S; Blank U; Galli T; Bigalke H; Bischoff SC; Lorentz A
    Eur J Immunol; 2008 Mar; 38(3):855-63. PubMed ID: 18253931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function.
    Johansson JU; Ericsson J; Janson J; Beraki S; Stanić D; Mandic SA; Wikström MA; Hökfelt T; Ogren SO; Rozell B; Berggren PO; Bark C
    PLoS Genet; 2008 Nov; 4(11):e1000278. PubMed ID: 19043548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malignant rhabdoid tumor shows incomplete neural characteristics as revealed by expression of SNARE complex.
    Yoshida S; Narita T; Taga T; Ohta S; Takeuchi Y
    J Neurosci Res; 2002 Sep; 69(5):642-52. PubMed ID: 12210830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils.
    Logan MR; Lacy P; Odemuyiwa SO; Steward M; Davoine F; Kita H; Moqbel R
    Allergy; 2006 Jun; 61(6):777-84. PubMed ID: 16677249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.