These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19161652)

  • 1. Trace analysis of polar pharmaceuticals in wastewater by LC-MS-MS: comparison of membrane bioreactor and activated sludge systems.
    Celiz MD; Pérez S; Barceló D; Aga DS
    J Chromatogr Sci; 2009 Jan; 47(1):19-25. PubMed ID: 19161652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of membrane bioreactors as decentralised systems for removal of endocrine disrupting chemicals and pharmaceuticals.
    Le-Minh N; Coleman HM; Khan SJ; van Luer Y; Trang TT; Watkins G; Stuetz RM
    Water Sci Technol; 2010; 61(5):1081-8. PubMed ID: 20220228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment.
    De Wever H; Weiss S; Reemtsma T; Vereecken J; Müller J; Knepper T; Rörden O; Gonzalez S; Barcelo D; Dolores Hernando M
    Water Res; 2007 Feb; 41(4):935-45. PubMed ID: 17207834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor.
    Radjenovic J; Petrovic M; Barceló D
    Anal Bioanal Chem; 2007 Feb; 387(4):1365-77. PubMed ID: 17115140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
    Lavén M; Alsberg T; Yu Y; Adolfsson-Erici M; Sun H
    J Chromatogr A; 2009 Jan; 1216(1):49-62. PubMed ID: 19054521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study.
    Huber MM; Göbel A; Joss A; Hermann N; Löffler D; McArdell CS; Ried A; Siegrist H; Ternes TA; von Gunten U
    Environ Sci Technol; 2005 Jun; 39(11):4290-9. PubMed ID: 15984812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pharmaceutical micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: case of continuous pollution by carbamazepine.
    Li C; Cabassud C; Reboul B; Guigui C
    Water Res; 2015 Feb; 69():183-194. PubMed ID: 25481077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry.
    Jelić A; Petrović M; Barceló D
    Talanta; 2009 Nov; 80(1):363-71. PubMed ID: 19782237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS).
    Radjenović J; Jelić A; Petrović M; Barceló D
    Anal Bioanal Chem; 2009 Mar; 393(6-7):1685-95. PubMed ID: 19172253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Popular pharmaceutical residues in hospital wastewater: quantification and qualification of degradation products by mass spectroscopy after treatment with membrane bioreactor.
    Chiarello M; Minetto L; Giustina SV; Beal LL; Moura S
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16079-89. PubMed ID: 27146545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.
    González S; Petrovic M; Barceló D
    Chemosphere; 2007 Feb; 67(2):335-43. PubMed ID: 17123581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.
    Kim SD; Cho J; Kim IS; Vanderford BJ; Snyder SA
    Water Res; 2007 Mar; 41(5):1013-21. PubMed ID: 16934312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace determination of pharmaceuticals and other wastewater-derived micropollutants by solid phase extraction and gas chromatography/mass spectrometry.
    Bisceglia KJ; Yu JT; Coelhan M; Bouwer EJ; Roberts AL
    J Chromatogr A; 2010 Jan; 1217(4):558-64. PubMed ID: 20015510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems.
    Brandt EM; de Queiroz FB; Afonso RJ; Aquino SF; Chernicharo CA
    J Environ Manage; 2013 Oct; 128():718-26. PubMed ID: 23850766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant.
    Clara M; Strenn B; Ausserleitner M; Kreuzinger N
    Water Sci Technol; 2004; 50(5):29-36. PubMed ID: 15497826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.
    Evans SE; Davies P; Lubben A; Kasprzyk-Hordern B
    Anal Chim Acta; 2015 Jul; 882():112-26. PubMed ID: 26043098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of linear alkylbenzene sulfonates removal in conventional activated sludge systems and membrane bioreactors.
    De Wever H; Van Roy S; Dotremont C; Miller J; Knepper T
    Water Sci Technol; 2004; 50(5):219-25. PubMed ID: 15497851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF.
    Wang Y; Wang X; Li M; Dong J; Sun C; Chen G
    Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29401723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane bioreactors for municipal wastewater treatment - a viable option to reduce the amount of polar pollutants discharged into surface waters?
    Weiss S; Reemtsma T
    Water Res; 2008 Aug; 42(14):3837-47. PubMed ID: 18684484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.