These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19161841)

  • 1. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncatalytic assembly of ribonuclease III with double-stranded RNA.
    Blaszczyk J; Gan J; Tropea JE; Court DL; Waugh DS; Ji X
    Structure; 2004 Mar; 12(3):457-66. PubMed ID: 15016361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate states of ribonuclease III in complex with double-stranded RNA.
    Gan J; Tropea JE; Austin BP; Court DL; Waugh DS; Ji X
    Structure; 2005 Oct; 13(10):1435-42. PubMed ID: 16216575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer.
    Takeshita D; Zenno S; Lee WC; Nagata K; Saigo K; Tanokura M
    J Mol Biol; 2007 Nov; 374(1):106-20. PubMed ID: 17920623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotoga maritima ribonuclease III. Characterization of thermostable biochemical behavior and analysis of conserved base pairs that function as reactivity epitopes for the Thermotoga 23S rRNA precursor.
    Nathania L; Nicholson AW
    Biochemistry; 2010 Aug; 49(33):7164-78. PubMed ID: 20677811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates.
    Calin-Jageman I; Nicholson AW
    Biochemistry; 2003 May; 42(17):5025-34. PubMed ID: 12718545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for non-catalytic and catalytic activities of ribonuclease III.
    Ji X
    Acta Crystallogr D Biol Crystallogr; 2006 Aug; 62(Pt 8):933-40. PubMed ID: 16855311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mini-III, a fourth class of RNase III catalyses maturation of the Bacillus subtilis 23S ribosomal RNA.
    Olmedo G; Guzmán P
    Mol Microbiol; 2008 Jun; 68(5):1073-6. PubMed ID: 18430137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe.
    Rotondo G; Huang JY; Frendewey D
    RNA; 1997 Oct; 3(10):1182-93. PubMed ID: 9326493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates.
    Shi Z; Nicholson RH; Jaggi R; Nicholson AW
    Nucleic Acids Res; 2011 Apr; 39(7):2756-68. PubMed ID: 21138964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for double-stranded RNA processing by Dicer.
    Macrae IJ; Zhou K; Li F; Repic A; Brooks AN; Cande WZ; Adams PD; Doudna JA
    Science; 2006 Jan; 311(5758):195-8. PubMed ID: 16410517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonuclease III mechanisms of double-stranded RNA cleavage.
    Nicholson AW
    Wiley Interdiscip Rev RNA; 2014; 5(1):31-48. PubMed ID: 24124076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of RNA recognition and cleavage by Dicer.
    MacRae IJ; Zhou K; Doudna JA
    Nat Struct Mol Biol; 2007 Oct; 14(10):934-40. PubMed ID: 17873886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stepwise model for double-stranded RNA processing by ribonuclease III.
    Gan J; Shaw G; Tropea JE; Waugh DS; Court DL; Ji X
    Mol Microbiol; 2008 Jan; 67(1):143-54. PubMed ID: 18047582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.