These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson's disease. Sircar E; Rai SR; Wilson MA; Schlossmacher MG; Sengupta R Arch Biochem Biophys; 2021 Jun; 704():108869. PubMed ID: 33819447 [TBL] [Abstract][Full Text] [Related]
7. Lycopodium Attenuates Loss of Dopaminergic Neurons by Suppressing Oxidative Stress and Neuroinflammation in a Rat Model of Parkinson's Disease. Jayaraj RL; Beiram R; Azimullah S; Meeran MFN; Ojha SK; Adem A; Jalal FY Molecules; 2019 Jun; 24(11):. PubMed ID: 31185705 [TBL] [Abstract][Full Text] [Related]
8. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Perfeito R; Cunha-Oliveira T; Rego AC Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292 [TBL] [Abstract][Full Text] [Related]
9. Association of -94 ATTG insertion/deletion NFkB1 and c.*126G>A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinson's Disease. Baltus THL; Morelli NR; de Farias CC; Trugilo KP; Okuyama NCM; de Oliveira KB; de Melo LB; Smaili SM; Barbosa DS Neurosci Lett; 2021 Jan; 740():135487. PubMed ID: 33161109 [TBL] [Abstract][Full Text] [Related]
10. S-Nitrosylation of G protein-coupled receptor kinase 6 and Casein kinase 2 alpha modulates their kinase activity toward alpha-synuclein phosphorylation in an animal model of Parkinson's disease. Wu W; Sung CC; Yu P; Li J; Chung KKK PLoS One; 2020; 15(4):e0232019. PubMed ID: 32343709 [TBL] [Abstract][Full Text] [Related]
11. S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. Tsang AH; Lee YI; Ko HS; Savitt JM; Pletnikova O; Troncoso JC; Dawson VL; Dawson TM; Chung KK Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4900-5. PubMed ID: 19273858 [TBL] [Abstract][Full Text] [Related]
13. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease. Tripathy D; Chakraborty J; Mohanakumar KP Free Radic Res; 2015; 49(9):1129-39. PubMed ID: 25968946 [TBL] [Abstract][Full Text] [Related]
14. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429 [TBL] [Abstract][Full Text] [Related]
15. An Update on the Role of Nitric Oxide in the Neurodegenerative Processes of Parkinson's Disease. Jiménez-Jiménez FJ; Alonso-Navarro H; Herrero MT; García-Martín E; Agúndez JA Curr Med Chem; 2016; 23(24):2666-2679. PubMed ID: 27776473 [TBL] [Abstract][Full Text] [Related]
17. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Fang J; Nakamura T; Cho DH; Gu Z; Lipton SA Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18742-7. PubMed ID: 18003920 [TBL] [Abstract][Full Text] [Related]
18. Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Nakamura T; Lipton SA Cell Death Differ; 2011 Sep; 18(9):1478-86. PubMed ID: 21597461 [TBL] [Abstract][Full Text] [Related]
19. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Tapias V; Hu X; Luk KC; Sanders LH; Lee VM; Greenamyre JT Cell Mol Life Sci; 2017 Aug; 74(15):2851-2874. PubMed ID: 28534083 [TBL] [Abstract][Full Text] [Related]
20. Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Zhang Y; Dawson VL; Dawson TM Neurobiol Dis; 2000 Aug; 7(4):240-50. PubMed ID: 10964596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]