These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1916227)

  • 1. A novel method for detection and counting of single bacteria in a wide field using an ultra-high-sensitivity TV camera without a microscope.
    Masuko M; Hosoi S; Hayakawa T
    FEMS Microbiol Lett; 1991 Jul; 65(3):287-90. PubMed ID: 1916227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection and counting of single bacteria in a wide field using a photon-counting TV camera.
    Masuko M; Hosoi S; Hayakawa T
    FEMS Microbiol Lett; 1991 Oct; 67(2):231-8. PubMed ID: 1778434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid detection and counting of viable bacteria in vegetables and environmental water using a photon-counting TV camera.
    Miyamoto T; Kuramitsu Y; Ookuma A; Trevanich S; Honjoh K; Hatano S
    J Food Prot; 1998 Oct; 61(10):1312-6. PubMed ID: 9798147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence intensity difference observed in luminous bacteria groups with different motility.
    Sasaki S; Okamoto T; Fujii T
    Lett Appl Microbiol; 2009 Mar; 48(3):313-7. PubMed ID: 19207857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of the dynamics of bioluminescence intensity of luminous bacteria Photobacterium phosphoreum].
    Drozdov AV; Gromozova EN; Gretsky IA
    Biofizika; 2015; 60(2):316-21. PubMed ID: 26016027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light.
    Zhu G; Yan B; Xing M; Tian C
    J Microbiol Methods; 2018 Oct; 153():66-73. PubMed ID: 30195830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera.
    March C; Manclús JJ; Abad A; Navarro A; Montoya A
    J Immunol Methods; 2005 Aug; 303(1-2):92-104. PubMed ID: 16005466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization.
    Pernthaler J; Pernthaler A; Amann R
    Appl Environ Microbiol; 2003 May; 69(5):2631-7. PubMed ID: 12732531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified method to automatically count bacterial colony forming unit.
    Putman M; Burton R; Nahm MH
    J Immunol Methods; 2005 Jul; 302(1-2):99-102. PubMed ID: 16002082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost, high-throughput, automated counting of bacterial colonies.
    Clarke ML; Burton RL; Hill AN; Litorja M; Nahm MH; Hwang J
    Cytometry A; 2010 Aug; 77(8):790-7. PubMed ID: 20140968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of synchronous photon emissions from the bacterium Photobacterium phosphoreum during colony formation from a single cell.
    Watanabe H; Suzuki S; Kobayashi M; Usa M; Inaba H
    J Biolumin Chemilumin; 1991; 6(1):13-8. PubMed ID: 2053463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of tririum on growth and bioluminescence of P. phosphoreum bacteria].
    Aleksandrova MA; Rozhko TV; Badun GA; Bondareva LG; Vydriakova GA; Kudriashova NS
    Radiats Biol Radioecol; 2010; 50(6):613-8. PubMed ID: 21434387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
    Ogawa H; Nasu S; Takeshige M; Funabashi H; Saito M; Matsuoka H
    J Microbiol Methods; 2012 Dec; 91(3):420-8. PubMed ID: 23085533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Growth and bioluminescence of luminous bacteria under the action of aflatoxin B1 before and after its treatment with nanodiamonds].
    Mogil'naia OA; Puzyr' AP; Bondar' VS
    Prikl Biokhim Mikrobiol; 2010; 46(1):40-4. PubMed ID: 20198915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-free microbial colony counting method based on hyperspectral features of agar plates.
    Shi J; Zhang F; Wu S; Guo Z; Huang X; Hu X; Holmes M; Zou X
    Food Chem; 2019 Feb; 274():925-932. PubMed ID: 30373029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.
    Wang X; Yamaguchi N; Someya T; Nasu M
    J Microbiol Methods; 2007 Oct; 71(1):1-6. PubMed ID: 17669529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Investigation of physiological features of luminous bacteria Photobacterium phosphoreum IMV B-7071].
    Gretskiĭ IA
    Mikrobiol Z; 2014; 76(3):42-7. PubMed ID: 25007443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The continuous culture of luminous bacteria: a luminostat.
    Wardley-Smith H; White DC; Lowe AE
    J Appl Bacteriol; 1975 Dec; 39(3):337-43. PubMed ID: 1107290
    [No Abstract]   [Full Text] [Related]  

  • 19. COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting.
    Corkidi G; Diaz-Uribe R; Folch-Mallol JL; Nieto-Sotelo J
    Appl Environ Microbiol; 1998 Apr; 64(4):1400-4. PubMed ID: 9546177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and luminescence of luminous bacteria promoted by agents of microbial origin.
    Rodicheva EK; Trubachev IN; Medvedeva SE; Egorova OI; Shitova LYu
    J Biolumin Chemilumin; 1993; 8(6):293-9. PubMed ID: 8285107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.