These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 1916228)
21. Chemical composition and biological activity of lipopolysaccharides prepared from type strains of Campylobacter jejuni and Campolybacter coli. Naess V; Hofstad T Acta Pathol Microbiol Immunol Scand B; 1984 Aug; 92(4):217-22. PubMed ID: 6440410 [TBL] [Abstract][Full Text] [Related]
22. Evidence for the structural heterogeneity of the polysaccharide component of Coxiella burnetii strain Nine Mile lipopolysaccharide. Toman R; Kazár J Acta Virol; 1991 Nov; 35(6):531-7. PubMed ID: 1687636 [TBL] [Abstract][Full Text] [Related]
23. Structural and antigenic heterogeneity of lipopolysaccharides of Campylobacter jejuni and Campylobacter coli. Logan SM; Trust TJ Infect Immun; 1984 Jul; 45(1):210-6. PubMed ID: 6203838 [TBL] [Abstract][Full Text] [Related]
24. Chemical characterization of lipopolysaccharides from Legionella feeleii, Legionella hackeliae and Legionella jordanis. Sonesson A; Jantzen E; Tangen T; Zähringer U Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2663-71. PubMed ID: 8000537 [TBL] [Abstract][Full Text] [Related]
26. Extraction and characterization of lipopolysaccharide from Pseudomonas pseudomallei. Kawahara K; Dejsirilert S; Danbara H; Ezaki T FEMS Microbiol Lett; 1992 Sep; 75(2-3):129-33. PubMed ID: 1383080 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the indoxyl acetate hydrolysis test for rapid differentiation of Campylobacter, Helicobacter, and Wolinella species. Popovic-Uroic T; Patton CM; Nicholson MA; Kiehlbauch JA J Clin Microbiol; 1990 Oct; 28(10):2335-9. PubMed ID: 2229360 [TBL] [Abstract][Full Text] [Related]
28. Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, species of the family Chromatiaceae. Meissner J; Pfennig N; Krauss JH; Mayer H; Weckesser J J Bacteriol; 1988 Jul; 170(7):3217-22. PubMed ID: 3384808 [TBL] [Abstract][Full Text] [Related]
29. TsdC, a unique lipoprotein from Wolinella succinogenes that enhances tetrathionate reductase activity of TsdA. Kurth JM; Schuster A; Seel W; Herresthal S; Simon J; Dahl C FEMS Microbiol Lett; 2017 Feb; 364(3):. PubMed ID: 28062520 [TBL] [Abstract][Full Text] [Related]
30. Isolation of smooth-type lipopolysaccharides to electrophoretic homogeneity. Pupo E; Hardy E Electrophoresis; 2007 Jul; 28(14):2351-7. PubMed ID: 17578840 [TBL] [Abstract][Full Text] [Related]
31. DNA homology studies of the catalase-negative campylobacters and "Campylobacter fecalis," an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Roop RM; Smibert RM; Johnson JL; Krieg NR Can J Microbiol; 1985 Sep; 31(9):823-31. PubMed ID: 4084862 [TBL] [Abstract][Full Text] [Related]
32. Biological effects of Veillonella parvula and Bacteroides intermedius lipopolysaccharides. Matera G; Liberto MC; Berlinghieri MC; Focà A Microbiologica; 1991 Oct; 14(4):315-23. PubMed ID: 1775087 [TBL] [Abstract][Full Text] [Related]
33. Campylobacter-Wolinella group organisms are the only oral bacteria that form arylsulfatase-active colonies on a synthetic indicator medium. Wyss C Infect Immun; 1989 May; 57(5):1380-3. PubMed ID: 2707850 [TBL] [Abstract][Full Text] [Related]
34. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species. Patra KP; Choudhury B; Matthias MM; Baga S; Bandyopadhya K; Vinetz JM BMC Microbiol; 2015 Oct; 15():244. PubMed ID: 26518696 [TBL] [Abstract][Full Text] [Related]
35. Lipopolysaccharides of the Heddleston serotypes of Pasteurella multocida. Rimler RB; Rebers PA; Phillips M Am J Vet Res; 1984 Apr; 45(4):759-63. PubMed ID: 6731991 [TBL] [Abstract][Full Text] [Related]
36. An unconventional anaerobic membrane protein production system based on Wolinella succinogenes. Lafontaine M; Lancaster CR Methods Enzymol; 2015; 556():99-121. PubMed ID: 25857779 [TBL] [Abstract][Full Text] [Related]
37. Chemical structure of the carbohydrate backbone of the lipopolysaccharide from Piscirickettsia salmonis. Vinogradov E; Frimmelova M; Toman R Carbohydr Res; 2013 Aug; 378():108-13. PubMed ID: 23673236 [TBL] [Abstract][Full Text] [Related]
38. Isolation and characterization of the lipopolysaccharides from Bradyrhizobium japonicum. Carrion M; Bhat UR; Reuhs B; Carlson RW J Bacteriol; 1990 Apr; 172(4):1725-31. PubMed ID: 2318801 [TBL] [Abstract][Full Text] [Related]
39. The resolution of bacteroides lipopolysaccharides by polyacrylamide gel electrophoresis. Maskell JP J Med Microbiol; 1991 May; 34(5):253-7. PubMed ID: 2030500 [TBL] [Abstract][Full Text] [Related]
40. Wolinella recta, Wolinella curva, Bacteroides ureolyticus, and Bacteroides gracilis are microaerophiles, not anaerobes. Han YH; Smibert RM; Krieg NR Int J Syst Bacteriol; 1991 Apr; 41(2):218-22. PubMed ID: 1854636 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]