BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 19162401)

  • 21. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells.
    Biju V; Muraleedharan D; Nakayama K; Shinohara Y; Itoh T; Baba Y; Ishikawa M
    Langmuir; 2007 Sep; 23(20):10254-61. PubMed ID: 17718524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of sensitivity and specificity of the fluoroimmunoassay of Hepatitis B virus surface antigen through "flexible" coupling between quantum dots and antibody.
    Zeng Q; Zhang Y; Song K; Kong X; Aalders MC; Zhang H
    Talanta; 2009 Nov; 80(1):307-12. PubMed ID: 19782230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Raman-fluorescence microscopy on single cells using quantum dots.
    van Manen HJ; Otto C
    Methods Mol Biol; 2011; 680():45-60. PubMed ID: 21153372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid phase single-molecule counting of antibody binding to supported protein layers surface with low nonspecific adsorption.
    Jiang D; Zhang Q; Shen X; Wang L; Jiang W
    Talanta; 2010 Aug; 82(3):1003-9. PubMed ID: 20678659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria.
    Dwarakanath S; Bruno JG; Shastry A; Phillips T; John AA; Kumar A; Stephenson LD
    Biochem Biophys Res Commun; 2004 Dec; 325(3):739-43. PubMed ID: 15541352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical attachment of fluorescent protein particles to atomic force microscopy probes in aqueous media: implications for surface pH, fluorescence, and mechanical properties studies.
    Moreno-Flores S; Georgieva R; Xiong Y; Melzak K; Bäumler H; Luis Toca-Herrera J
    Microsc Res Tech; 2010 Aug; 73(8):746-51. PubMed ID: 20034020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of non-covalent bioconjugation of colloidal nanoparticles by means of atomic force microscopy and data clustering.
    Irrgang J; Ksienczyk J; Lapiene V; Niemeyer CM
    Chemphyschem; 2009 Jul; 10(9-10):1483-91. PubMed ID: 19322805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic force microscopy study of fine structures of the entire surface of red blood cells.
    Zhang PC; Bai C; Huang YM; Zhao H; Fang Y; Wang NX; Li Q
    Scanning Microsc; 1995; 9(4):981-9; discussion 1009-10. PubMed ID: 8819883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins.
    Babu P; Sinha S; Surolia A
    Bioconjug Chem; 2007; 18(1):146-51. PubMed ID: 17226967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale controlled self-assembled monolayers and quantum dots.
    Shin SK; Yoon HJ; Jung YJ; Park JW
    Curr Opin Chem Biol; 2006 Oct; 10(5):423-9. PubMed ID: 16931110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing cell-type-specific intracellular nanoscale barriers using size-tuned quantum dots.
    Williams Y; Sukhanova A; Nowostawska M; Davies AM; Mitchell S; Oleinikov V; Gun'ko Y; Nabiev I; Kelleher D; Volkov Y
    Small; 2009 Nov; 5(22):2581-8. PubMed ID: 19685445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy.
    Nisman R; Dellaire G; Ren Y; Li R; Bazett-Jones DP
    J Histochem Cytochem; 2004 Jan; 52(1):13-8. PubMed ID: 14688213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High sensitivity detection of protein molecules picked up on a probe of atomic force microscope based on the fluorescence detection by a total internal reflection fluorescence microscope.
    Yamada T; Afrin R; Arakawa H; Ikai A
    FEBS Lett; 2004 Jul; 569(1-3):59-64. PubMed ID: 15225609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic force microscopy and its related techniques in biomedicine.
    Ushiki T
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):3-8. PubMed ID: 11729969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photophysics of dopamine-modified quantum dots and effects on biological systems.
    Clarke SJ; Hollmann CA; Zhang Z; Suffern D; Bradforth SE; Dimitrijevic NM; Minarik WG; Nadeau JL
    Nat Mater; 2006 May; 5(5):409-17. PubMed ID: 16617348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.
    Anas A; Okuda T; Kawashima N; Nakayama K; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2009 Aug; 3(8):2419-29. PubMed ID: 19653641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules.
    Pattani VP; Li C; Desai TA; Vu TQ
    Biomed Microdevices; 2008 Jun; 10(3):367-74. PubMed ID: 18183489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.