These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19162542)

  • 1. Localization of perialgal vacuoles beneath the host cell surface is not a prerequisite phenomenon for protection from the host's lysosomal fusion in the ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2009 May; 160(2):319-29. PubMed ID: 19162542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2009 Feb; 160(1):65-74. PubMed ID: 18715827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycloheximide induces synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2008 Jul; 159(3):483-94. PubMed ID: 18479967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symbiotic Chlorella vulgaris of the ciliate Paramecium bursaria plays an important role in maintaining perialgal vacuole membrane functions.
    Kodama Y; Inouye I; Fujishima M
    Protist; 2011 Apr; 162(2):288-303. PubMed ID: 20884291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex.
    Kodama Y; Fujishima M
    Protoplasma; 2011 Apr; 248(2):325-37. PubMed ID: 20582727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuoles during infection.
    Kodama Y; Fujishima M
    Protoplasma; 2005 Oct; 225(3-4):191-203. PubMed ID: 15997335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of algal surface structures in the cell recognition process during infection of aposymbiotic Paramecium bursaria with symbiotic chlorellae.
    Reisser W; Radunz A; Wiessner W
    Cytobios; 1982; 33(129):39-50. PubMed ID: 7105840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2013 Sep; 164(5):660-72. PubMed ID: 23912150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria.
    Meier R; Lefort-Tran M; Pouphile M; Reisser W; Wiessner W
    J Cell Sci; 1984 Oct; 71():121-40. PubMed ID: 6520143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection.
    Kodama Y; Sumita H
    Protoplasma; 2022 Jan; 259(1):117-125. PubMed ID: 33881616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbiotic alga Chlorella vulgaris of the ciliate Paramecium bursaria shows temporary resistance to host lysosomal enzymes during the early infection process.
    Kodama Y; Nakahara M; Fujishima M
    Protoplasma; 2007; 230(1-2):61-7. PubMed ID: 17111098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of host ciliate Paramecium bursaria mitochondria and trichocysts for symbiotic Chlorella variabilis attachment beneath the host cell cortex.
    Kodama Y; Fujishima M
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37660246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary symbiosis between Paramecium and Chlorella cells.
    Kodama Y; Fujishima M
    Int Rev Cell Mol Biol; 2010; 279():33-77. PubMed ID: 20797676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.
    Kodama Y; Fujishima M
    Environ Microbiol; 2012 Oct; 14(10):2800-11. PubMed ID: 22672708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2012 Jul; 163(4):658-70. PubMed ID: 22177452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of vacuolar membrane fusion by intracellular symbiotic algae in Hydra viridis (Florida strain).
    O'Brien TL
    J Exp Zool; 1982 Nov; 223(3):211-8. PubMed ID: 7175449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella.
    Summerer M; Sonntag B; Hörtnagl P; Sommaruga R
    Protist; 2009 May; 160(2):233-43. PubMed ID: 19195930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symbiosis in Paramecium Bursaria.
    Karakashian MW
    Symp Soc Exp Biol; 1975; (29):145-73. PubMed ID: 785659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of trichocysts in Paramecium bursaria following artificial removal and infection with the symbiotic Chlorella variabilis.
    Morita H; Kodama Y
    Eur J Protistol; 2024 Aug; 95():126115. PubMed ID: 39216315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium.
    Kadono T; Kawano T; Hosoya H; Kosaka T
    Protoplasma; 2004 Jun; 223(2-4):133-41. PubMed ID: 15221518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.