These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19162587)

  • 1. Recording with microchannel electrodes in a noisy environment.
    FitzGerald JJ; Lacour SP; Fawcett JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():34-7. PubMed ID: 19162587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive neutralization of myoelectric interference from neural recording tripoles.
    Pachnis I; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1067-74. PubMed ID: 17554825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface.
    Gore RK; Choi Y; Bellamkonda R; English A
    J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On cuff imbalance and tripolar ENG amplifier configurations.
    Triantis IF; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):314-20. PubMed ID: 15709669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched EMG electrodes for stable and selective recording of single motor unit potentials in humans.
    Christova L; Stephanova D; Kossev A
    Biomed Tech (Berl); 2007 Feb; 52(1):117-21. PubMed ID: 17313346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microchannel electrodes for recording and stimulation: in vitro evaluation.
    FitzGerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2009 May; 56(5):1524-34. PubMed ID: 19203882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling study of peripheral nerve recording selectivity.
    Perez-Orive J; Durand DM
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):320-9. PubMed ID: 11001512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ASIC for Recording and Stimulation in Stacked Microchannel Neural Interfaces.
    Lancashire HT; Jiang D; Demosthenous A; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):259-270. PubMed ID: 30624225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.
    López NM; di Sciascio F; Soria CM; Valentinuzzi ME
    Biomed Eng Online; 2009 Feb; 8():5. PubMed ID: 19243627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible multi electrode brain-machine interface for recording in the cerebellum.
    Kohler P; Linsmeier CE; Thelin J; Bengtsson M; Jorntell H; Garwicz M; Schouenborg J; Wallman L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():536-8. PubMed ID: 19963970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microchannel neural interface manufacture by stacking silicone and metal foil laminae.
    Lancashire HT; Vanhoestenberghe A; Pendegrass CJ; Ajam YA; Magee E; Donaldson N; Blunn GW
    J Neural Eng; 2016 Jun; 13(3):034001. PubMed ID: 27001943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very low-noise ENG amplifier system using CMOS technology.
    Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes.
    Yoshida K; Stein RB
    IEEE Trans Biomed Eng; 1999 Feb; 46(2):226-34. PubMed ID: 9932344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical recording with polypyrrole microwire electrodes.
    Bae WJ; Ruddy BP; Richardson AG; Hunter IW; Bizzi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5794-7. PubMed ID: 19164034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based evaluation of the short-circuited tripolar cuff configuration.
    Andreasen LN; Struijk JJ
    Med Biol Eng Comput; 2006 May; 44(5):404-13. PubMed ID: 16937182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bipolar , active electrode for 4-channel recording of dynamic surface EMG during electric stimulation].
    Rupp R; Vossius G; Gerner HJ
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():609-10. PubMed ID: 12465252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.