These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19162590)

  • 1. Automated reduction of non-neuronal signals from intra-cortical microwire array recordings by use of correlation technique.
    Paralikar K; Rao C; Clement RS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():46-9. PubMed ID: 19162590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: inter-electrode correlation and virtual referencing.
    Paralikar KJ; Rao CR; Clement RS
    J Neurosci Methods; 2009 Jun; 181(1):27-35. PubMed ID: 19394363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of lossy compression on neural response characteristics extracted from high-density intra-cortical implant data.
    Shetliffe MA; Kamboh AM; Mason A; Oweiss KG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5358-61. PubMed ID: 18003218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.
    Pothof F; Bonini L; Lanzilotto M; Livi A; Fogassi L; Orban GA; Paul O; Ruther P
    J Neural Eng; 2016 Aug; 13(4):046006. PubMed ID: 27247248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
    Barker DJ; Root DH; Coffey KR; Ma S; West MO
    J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction.
    Gibson S; Judy JW; Marković D
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):469-78. PubMed ID: 20525534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpikeDeeptector: a deep-learning based method for detection of neural spiking activity.
    Saif-Ur-Rehman M; Lienkämper R; Parpaley Y; Wellmer J; Liu C; Lee B; Kellis S; Andersen R; Iossifidis I; Glasmachers T; Klaes C
    J Neural Eng; 2019 Jul; 16(5):056003. PubMed ID: 31042684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.
    Yeager JD; Phillips DJ; Rector DM; Bahr DF
    J Neurosci Methods; 2008 Aug; 173(2):279-85. PubMed ID: 18640155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical recording with polypyrrole microwire electrodes.
    Bae WJ; Ruddy BP; Richardson AG; Hunter IW; Bizzi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5794-7. PubMed ID: 19164034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys.
    Bonini L; Maranesi M; Livi A; Bruni S; Fogassi L; Holzhammer T; Paul O; Ruther P
    Biomed Tech (Berl); 2014 Aug; 59(4):273-81. PubMed ID: 24434299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A movable microelectrode array for chronic basal ganglia single-unit electrocorticogram co-recording in freely behaving rats.
    Zheng X; Zeng J; Chen T; Lin Y; Yu L; Li Y; Lin Z; Wu X; Chen F; Kang D; Zhang S
    Neurol Sci; 2014 Sep; 35(9):1429-39. PubMed ID: 24838541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis.
    Mahmud M; Bertoldo A; Girardi S; Maschietto M; Vassanelli S
    J Neurosci Methods; 2012 May; 207(1):97-112. PubMed ID: 22513383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible multi electrode brain-machine interface for recording in the cerebellum.
    Kohler P; Linsmeier CE; Thelin J; Bengtsson M; Jorntell H; Garwicz M; Schouenborg J; Wallman L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():536-8. PubMed ID: 19963970
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.