These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19162624)

  • 1. An embedded controller for a 7-degree of freedom prosthetic arm.
    Tenore F; Armiger RS; Vogelstein RJ; Wenstrand DS; Harshbarger SD; Englehart K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():185-8. PubMed ID: 19162624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis.
    Controzzi M; Clemente F; Barone D; Ghionzoli A; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):459-468. PubMed ID: 27305682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
    Segil JL; Huddle SA; Weir RFF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online electromyographic control of a robotic prosthesis.
    Shenoy P; Miller KJ; Crawford B; Rao RN
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time virtual integration environment for the design and development of neural prosthetic systems.
    Bishop W; Armiger R; Burck J; Bridges M; Hauschild M; Englehart K; Scheme E; Vogelstein RJ; Beaty J; Harshbarger S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():615-9. PubMed ID: 19162731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary functional assessment of a multigrasp myoelectric prosthesis.
    Dalley SA; Bennett DA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4172-5. PubMed ID: 23366847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A special purpose embedded system for neural machine interface for artificial legs.
    Zhang X; Huang H; Yang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5207-10. PubMed ID: 22255511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promise of a low power mobile CPU based embedded system in artificial leg control.
    Hernandez R; Zhang F; Zhang X; Huang H; Yang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5250-3. PubMed ID: 23367113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the control of individual fingers of a prosthetic hand using surface EMG signals.
    Tenore F; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6146-9. PubMed ID: 18003418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of a myoelectric arm considering cooperated motion of elbow and shoulder joints.
    Kiguchi K; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1616-9. PubMed ID: 22254632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    MadoĊ„ski R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.
    Mastinu E; Doguet P; Botquin Y; Hakansson B; Ortiz-Catalan M
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):867-877. PubMed ID: 28541915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new biomechanical hand prosthesis controlled by surface electromyographic signals.
    Andrade NA; Borges GA; de O Nascimento FA; Romariz AR; da Rocha AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6142-5. PubMed ID: 18003417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.