BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19162628)

  • 21. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.
    Suberbiola A; Zulueta E; Lopez-Guede JM; Etxeberria-Agiriano I; Graña M
    Int J Neural Syst; 2015 May; 25(3):1550009. PubMed ID: 25851029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of contaminant type in surface electromyography (EMG) signals.
    McCool P; Fraser GD; Chan AD; Petropoulakis L; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):774-83. PubMed ID: 24760926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of independent and dependent components of non-invasive EMG using fast ICA: validation in recognising complex gestures.
    Naik GR; Kumar DK
    Comput Methods Biomech Biomed Engin; 2011 Dec; 14(12):1105-11. PubMed ID: 21476156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of the dynamic spinal forces using a recurrent fuzzy neural network.
    Hou Y; Zurada JM; Karwowski W; Marras WS; Davis K
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):100-9. PubMed ID: 17278564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the challenge of classifying 52 hand movements from surface electromyography.
    Kuzborskij I; Gijsberts A; Caputo B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4931-7. PubMed ID: 23367034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous movement decoding using a target-dependent model with EMG inputs.
    Sachs NA; Corbett EA; Miller LE; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5432-5. PubMed ID: 22255566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavelet analysis for Support Vector Machine classification of motor unit action potentials.
    Dobrowolski AP; Wierzbowski M; Tomczykiewicz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4632-5. PubMed ID: 21096234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of the Teager-Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements.
    Krabben T; Prange GB; Kobus HJ; Rietman JS; Buurke JH
    Acta Bioeng Biomech; 2016; 18(4):135-144. PubMed ID: 28133386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EMG analysis of the thenar muscles as a model for EMG-triggered larynx stimulation.
    Reinhardt B; Leistritz L; Faenger B; Hansen E; Scholle HC; Müller A
    Biomed Tech (Berl); 2007 Feb; 52(1):122-5. PubMed ID: 17313347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a Micro-Macro Neural Network to recognize rollover movement.
    Ando T; Okamoto J; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5228-33. PubMed ID: 19163896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm.
    Kanitz GR; Antfolk C; Cipriani C; Sebelius F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1608-11. PubMed ID: 22254630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of upper limb muscle activity from motor cortical discharge during reaching.
    Pohlmeyer EA; Solla SA; Perreault EJ; Miller LE
    J Neural Eng; 2007 Dec; 4(4):369-79. PubMed ID: 18057504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG.
    Chen X; Zeng Y; Yin Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):577-588. PubMed ID: 27333607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of amplitude cancellation on the accuracy of determining the onset of muscle activity from the surface electromyogram.
    Jesunathadas M; Aidoor SS; Keenan KG; Farina D; Enoka RM
    J Electromyogr Kinesiol; 2012 Jun; 22(3):494-500. PubMed ID: 22330887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification.
    Gijsberts A; Atzori M; Castellini C; Muller H; Caputo B
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):735-44. PubMed ID: 24760932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pattern recognition technique to characterize the differential modulation of co-activating muscles at the performer/environment interface.
    Pelland L; McKinley P
    J Electromyogr Kinesiol; 2004 Oct; 14(5):539-54. PubMed ID: 15301773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing.
    Xu Q; Quan Y; Yang L; He J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):65-73. PubMed ID: 23193462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines.
    Arjunan SP; Kumar DK; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4821-4. PubMed ID: 21097298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.