These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19162636)

  • 21. Electromagnetic-thermal analysis of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors using a human model with blood flow and fat layer.
    Tange Y; Kanai Y; Saitoh Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4368-71. PubMed ID: 19163681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Deep Thermal Rehabilitation System Using Resonant Cavity Applicator During Knee Experiments.
    Shindo Y; Kato K; Ichishima Y; Iseki Y; Tokutake R; Ikuta F; Takahashi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3220-3223. PubMed ID: 30441077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional heating by insertion of dielectrics and rotation of the focused electric field in the hyperthermia.
    Kameyama Y; Ishihara Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4380-3. PubMed ID: 19163684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element analysis of the needle type applicator made of shape memory alloy.
    Yabuhara T; Kato K; Kanazawa Y; Kubo M; Takahashi H; Uzuka T; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4364-7. PubMed ID: 19163680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of the resonant cavity applicator for brain tumor hyperthermia - Experimental heating results -.
    Yabuhara T; Kato K; Tsuchiya K; Shigihara T; Kohara T; Uzuka T; Takahashi H; Tanaka R
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6777-80. PubMed ID: 17281829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heating properties of the needle type applicator made of shape memory alloy by 3-D anatomical human head model.
    Mimoto N; Kato K; Kanazawa Y; Shindo Y; Tsuchiya K; Kubo M; Uzuka T; Takahashi H; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3068-71. PubMed ID: 19963558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetic analysis of an RF rectangular resonant cavity applicator for hyperthermic treatment using whole-body voxel human model of Japanese adult male.
    Tange Y; Yabumoto K; Kanai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():337-40. PubMed ID: 22254317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y; Matsuda J; Kato K
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FDTD analysis of a noninvasive hyperthermia system for brain tumors.
    Yacoob SM; Hassan NS
    Biomed Eng Online; 2012 Aug; 11():47. PubMed ID: 22891953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors.
    Ishihara Y; Gotanda Y; Wadamori N; Matsuda J
    Rev Sci Instrum; 2007 Feb; 78(2):024301. PubMed ID: 17578127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tumor ablation at low frequencies for preferential tumor heating: initial ex-vivo tissue studies.
    Schutt DJ; Haemmerich D
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():238-41. PubMed ID: 19162637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive thermometry in a reentrant resonant cavity applicator.
    Ishihara Y; Endo Y; Ohwada H; Wadamori N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1487-90. PubMed ID: 18002248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.
    Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW
    Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FDTD study of the focusing properties of a hybrid hyperthermia and radiometry imaging system using a realistic human head model.
    Gouzouasis IA; Karanasiou IS; Uzunoglu NK
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3552-5. PubMed ID: 18002764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia.
    Lin WL; Fan WC; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1329-36. PubMed ID: 10725647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Thermal distribution in the agar phantom by a new intracavitary RF applicator for prostate gland].
    Inatomi H; Sugita A; Terashima H; Yoshiura T; Kunugita N; Norimura T; Tsuchiya T
    J UOEH; 1992 Mar; 14(1):39-45. PubMed ID: 1509211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.