These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 1916266)

  • 21. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency.
    Mougin A; Grégoire A; Banroques J; Ségault V; Fournier R; Brulé F; Chevrier-Miller M; Branlant C
    RNA; 1996 Nov; 2(11):1079-93. PubMed ID: 8903339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.
    Niemer I; Schmelzer C; Börner GV
    Nucleic Acids Res; 1995 Sep; 23(17):2966-72. PubMed ID: 7567443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The NAM8 gene in Saccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed.
    Ekwall K; Kermorgant M; Dujardin G; Groudinsky O; Slonimski PP
    Mol Gen Genet; 1992 May; 233(1-2):136-44. PubMed ID: 1603056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and thermodynamic framework for assembly of the six-component bI3 group I intron ribonucleoprotein catalyst.
    Bassi GS; Weeks KM
    Biochemistry; 2003 Aug; 42(33):9980-8. PubMed ID: 12924947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two distinct binding modes of a protein cofactor with its target RNA.
    Bokinsky G; Nivón LG; Liu S; Chai G; Hong M; Weeks KM; Zhuang X
    J Mol Biol; 2006 Aug; 361(4):771-84. PubMed ID: 16872630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases.
    Lamech LT; Mallam AL; Lambowitz AM
    PLoS Biol; 2014 Dec; 12(12):e1002028. PubMed ID: 25536042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA splicing in yeast mitochondria: DNA sequence analysis of mit- mutants deficient in the excision of introns aI1 and aI2 of the gene for subunit I of cytochrome c oxidase.
    van der Veen R; de Haan M; Grivell LA
    Curr Genet; 1988 Mar; 13(3):219-26. PubMed ID: 2838183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP).
    Turk EM; Caprara MG
    J Biol Chem; 2010 Mar; 285(12):8585-94. PubMed ID: 20064926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.
    Niemer I; Schmelzer C; Börner GV
    Nucleic Acids Res; 1995 Aug; 23(15):2966-72. PubMed ID: 7659519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of a cell-type-specific RNA splicing factor to its target regulatory sequence.
    Nandabalan K; Roeder GS
    Mol Cell Biol; 1995 Apr; 15(4):1953-60. PubMed ID: 7891689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein.
    Rain JC; Legrain P
    EMBO J; 1997 Apr; 16(7):1759-71. PubMed ID: 9130720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing.
    Huang HR; Chao MY; Armstrong B; Wang Y; Lambowitz AM; Perlman PS
    Mol Cell Biol; 2003 Dec; 23(23):8809-19. PubMed ID: 14612420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-mRNA splicing in yeast.
    Ruby SW; Abelson J
    Trends Genet; 1991 Mar; 7(3):79-85. PubMed ID: 2031287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs.
    Tanner NK; Sargueil B
    J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns.
    Golik P; Szczepanek T; Bartnik E; Stepien PP; Lazowska J
    Curr Genet; 1995 Aug; 28(3):217-24. PubMed ID: 8529267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochrome b gene.
    Hill J; McGraw P; Tzagoloff A
    J Biol Chem; 1985 Mar; 260(6):3235-8. PubMed ID: 3882709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family.
    Wiesenberger G; Link TA; von Ahsen U; Waldherr M; Schweyen RJ
    J Mol Biol; 1991 Jan; 217(1):23-37. PubMed ID: 1703236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small structural costs for evolution from RNA to RNP-based catalysis.
    Garcia I; Weeks KM
    J Mol Biol; 2003 Aug; 331(1):57-73. PubMed ID: 12875836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.